1
|
Allison SJ: Chronic kidney disease: The
effect of age on CKD outcomes. Nat Rev Nephrol. 9:32013. View Article : Google Scholar
|
2
|
Hallan SI, Matsushita K, Sang Y, Mahmoodi
BK, Black C, Ishani A, Kleefstra N, Naimark D, Roderick P, Tonelli
M, et al: Age and association of kidney measures with mortality and
end-stage renal disease. JAMA. 308:2349–2360. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kovesdy CP, Alrifai A, Gosmanova EO, Lu
JL, Canada RB, Wall BM, Hung AM, Molnar MZ and Kalantar-Zadeh K:
Age and outcomes associated with BP in patients with incident CKD.
Clin J Am Soc Nephrol. 11:821–831. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tangri N, Komenda P and Rigatto C: Age and
outcomes in CKD. Am J Kidney Dis. 62:225–227. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lai L, Chen J, Hao CM, Lin S and Gu Y:
Aldosterone promotes fibronectin production through a
Smad2-dependent TGF-beta1 pathway in mesangial cells. Biochem
Biophys Res Commun. 348:70–75. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Brown NJ: Contribution of aldosterone to
cardiovascular and renal inflammation and fibrosis. Nat Rev
Nephrol. 9:459–469. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Herrada AA, Contreras FJ, Marini NP,
Amador CA, González PA, Cortés CM, Riedel CA, Carvajal CA, Figueroa
F, Michea LF, et al: Aldosterone promotes autoimmune damage by
enhancing Th17-mediated immunity. J Immunol. 184:191–202. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Huby AC, Antonova G, Groenendyk J,
Gomez-Sanchez CE, Bollag WB, Filosa JA and Belin de Chantemèle EJ:
Adipocyte-derived hormone leptin is a direct regulator of
aldosterone secretion, which promotes endothelial dysfunction and
cardiac fibrosis. Circulation. 132:2134–2145. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mayyas F, Alzoubi KH and Van Wagoner DR:
Impact of aldosterone antagonists on the substrate for atrial
fibrillation: Aldosterone promotes oxidative stress and atrial
structural/electrical remodeling. Int J Cardiol. 168:5135–5142.
2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
McGraw AP, Bagley J, Chen WS, Galayda C,
Nickerson H, Armani A, Caprio M, Carmeliet P and Jaffe IZ:
Aldosterone increases early atherosclerosis and promotes plaque
inflammation through a placental growth factor-dependent mechanism.
J Am Heart Assoc. 2:e0000182013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang M, Chen J, Lai L, You L, Lin S, Hao
C and Gu Y: Aldosterone promotes fibronectin synthesis in rat
mesangial cells via ERK1/2-stimulated Na-H+ exchanger isoform 1. Am
J Nephrol. 31:75–82. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bleskestad IH, Thorsen IS, Jonsson G,
Skadberg Ø, Bergrem H and Gøransson LG: Soluble Klotho and intact
fibroblast growth factor 23 in long-term kidney transplant
patients. Eur J Endocrinol. 172:343–350. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Haruna Y, Kashihara N, Satoh M, Tomita N,
Namikoshi T, Sasaki T, Fujimori T, Xie P and Kanwar YS:
Amelioration of progressive renal injury by genetic manipulation of
klotho gene. Proc Natl Acad Sci USA. 104:2331–2336. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lu X and Hu MC: Klotho/FGF23 axis in
chronic kidney disease and cardiovascular disease. Kidney Dis
(Basel). 3:15–23. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Drew DA, Katz R, Kritchevsky S, Ix J,
Shlipak M, Gutiérrez OM, Newman A, Hoofnagle A, Fried L, Semba RD
and Sarnak M: Association between soluble Klotho and change in
kidney function: The health aging and body composition study. J Am
Soc Nephrol. 28:1859–1866. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lin W, Li Y, Chen F, Yin S, Liu Z and Cao
W: Klotho preservation via histone deacetylase inhibition
attenuates chronic kidney disease-associated bone injury in mice.
Sci Rep. 7:461952017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Park MY, Herrmann SM, Saad A, Eirin A,
Tang H, Lerman A, Textor SC and Lerman LO: Biomarkers of kidney
injury and klotho in patients with atherosclerotic renovascular
disease. Clin J Am Soc Nephrol. 10:443–451. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ritter CS, Zhang S, Delmez J, Finch JL and
Slatopolsky E: Differential expression and regulation of Klotho by
paricalcitol in the kidney, parathyroid, and aorta of uremic rats.
Kidney Int. 87:1141–1152. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Q, Liu L, Lin W, Yin S, Duan A, Liu
Z and Cao W: Rhein reverses Klotho repression via promoter
demethylation and protects against kidney and bone injuries in mice
with chronic kidney disease. Kidney Int. 91:144–156. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou L, Mo H, Miao J, Zhou D, Tan RJ, Hou
FF and Liu Y: Klotho ameliorates kidney injury and fibrosis and
normalizes blood pressure by targeting the Renin-Angiotensin
system. Am J Pathol. 185:3211–3223. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Brocks D, Schmidt CR, Daskalakis M, Jang
HS, Shah NM, Li D, Li J, Zhang B, Hou Y, Laudato S, et al: DNMT and
HDAC inhibitors induce cryptic transcription start sites encoded in
long terminal repeats. Nat Genet. 49:1052–1060. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cantley MD, Zannettino ACW, Bartold PM,
Fairlie DP and Haynes DR: Histone deacetylases (HDAC) in
physiological and pathological bone remodelling. Bone. 95:162–174.
2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Guerriero JL, Sotayo A, Ponichtera HE,
Castrillon JA, Pourzia AL, Schad S, Johnson SF, Carrasco RD, Lazo
S, Bronson RT, et al: Class IIa HDAC inhibition reduces breast
tumours and metastases through anti-tumour macrophages. Nature.
543:428–432. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hull EE, Montgomery MR and Leyva KJ: HDAC
inhibitors as epigenetic regulators of the immune system: Impacts
on cancer therapy and inflammatory diseases. Biomed Res Int 2016.
87972062016.
|
25
|
Kwon DY, Zhao YT, Lamonica JM and Zhou Z:
Locus-specific histone deacetylation using a synthetic
CRISPR-Cas9-based HDAC. Nat Commun. 8:153152017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Thoma C: Kidney cancer: Combination of
HDAC inhibitor with IL-2 promising. Nat Rev Urol. 14:6392017.
View Article : Google Scholar
|
27
|
Inker LA, Astor BC, Fox CH, Isakova T,
Lash JP, Peralta CA, Kurella Tamura M and Feldman HI: KDOQI US
commentary on the 2012 KDIGO clinical practice guideline for the
evaluation and management of CKD. Am J Kidney Dis. 63:713–735.
2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Levey AS and Stevens LA: Estimating GFR
using the CKD Epidemiology Collaboration (CKD-EPI) creatinine
equation: More accurate GFR estimates, lower CKD prevalence
estimates, and better risk predictions. Am J Kidney Dis.
55:622–627. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang B, Ding W, Zhang M, Li H and Gu Y:
Rapamycin attenuates aldosterone-induced tubulointerstitial
inflammation and fibrosis. Cell Physiol Biochem. 35:116–125. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Shavit L, Lifschitz MD and Epstein M:
Aldosterone blockade and the mineralocorticoid receptor in the
management of chronic kidney disease: Current concepts and emerging
treatment paradigms. Kidney Int. 81:955–968. 2012. View Article : Google Scholar : PubMed/NCBI
|