1
|
Fitzpatrick EM, Whittingham J and
Durieux-Smith A: Mild bilateral and unilateral hearing loss in
childhood: A 20-year view of hearing characteristics, and
audiologic practices before and after newborn hearing screening.
Ear Hear. 35:10–8. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ghogomu N, Umansky A and Lieu JE:
Epidemiology of unilateral sensorineural hearing loss with
universal newborn hearing screening. Laryngoscope. 124:295–300.
2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ding Y, Xia BH, Liu Q, Li MY, Huang SX and
Zhuo GC: Allele-specific PCR for detecting the deafness-associated
mitochondrial 12S rRNA mutations. Gene. 591:148–152. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Ding Y, Leng J, Fan F, Xia B and Xu P: The
role of mitochondrial DNA mutations in hearing loss. Biochem Genet.
51:588–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Anderson S, Bankier AT, Barrell BG, de
Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA,
Sanger F, et al: Sequence and organization of the human
mitochondrial genome. Nature. 290:457–465. 1981. View Article : Google Scholar : PubMed/NCBI
|
6
|
Prezant TR, Agapian JV, Bohlman MC, Bu X,
Oztas S, Qiu WQ, Arnos KS, Cortopassi GA, Jaber L, Rotter JI, et
al: Mitochondrial ribosomal RNA mutation associated with both
antibiotic-induced and non-syndromic deafness. Nat Genet.
4:289–294. 1993. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guan MX: Mitochondrial 12S rRNA mutations
associated with aminoglycoside ototoxicity. Mitochondrion.
11:237–245. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Park MK, Sagong B, Lee JD, Bae SH, Lee B,
Choi KS, Choo YS, Lee KY and Kim UK: A1555G homoplasmic mutation
from A1555G heteroplasmic mother with pendred syndrome. Int J
Pediatr Otorhinolaryngol. 78:1996–1999. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Skou AS, Tranebjærg L, Jensen T and Hasle
H: Mitochondrial 12S ribosomal RNA A1555G mutation associated with
cardiomyopathy and hearing loss following high-dose chemotherapy
and repeated aminoglycoside exposure. J Pediatr. 164:413–415. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Salomão KB, Ayo CM and Della-Rosa VA:
Investigation of the A1555G mutation in mitochondrial DNA (MT-RNR1)
in groups of Brazilian individuals with nonsyndromic deafness and
normal-hearing. Indian J Hum Genet. 19:54–57. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bae JW, Kim DB, Choi JY, Park HJ, Lee JD,
Hur DG, Bae SH, Jung DJ, Lee SH, Kim UK and Lee KY: Molecular and
clinical characterization of the variable phenotype in Korean
families with hearing loss associated with the mitochondrial A1555G
mutation. PLoS One. 7:e424632012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Guan MX, Fischel-Ghodsian N and Attardi G:
Nuclear background determines biochemical phenotype in the
deafness-associated mitochondrial 12S rRNA mutation. Hum Mol Genet.
10:573–580. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tekin D, Yan D, Bademci G, Feng Y, Guo S,
Foster J II, Blanton S, Tekin M and Liu X: A next-generation
sequencing gene panel (MiamiOtoGenes) for comprehensive analysis of
deafness genes. Hear Res. 333:179–184. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rieder MJ, Taylor SL, Tobe VO and
Nickerson DA: Automating the identification of DNA variations using
quality-based fluorescence re-sequencing: Analysis of the human
mitochondrial genome. Nucleic Acids Res. 26:967–973. 1998.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Andrews RM, Kubacka I, Chinnery PF,
Lightowlers RN, Turnbull DM and Howell N: Reanalysis and revision
of the Cambridge reference sequence for human mitochondrial DNA.
Nat Genet. 23:1471999. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Leclère JC, Le Gac MS, Le Maréchal C,
Ferec C and Marianowski R: GJB2 mutations: Genotypic and phenotypic
correlation in a cohort of 690 hearing-impaired patients, toward a
new mutation? Int J Pediatr Otorhinolaryngol. 102:80–85. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bibb MJ, Van Etten RA, Wright CT, Walberg
MW and Clayton DA: Sequence and gene organization of mouse
mitochondrial DNA. Cell. 26:167–180. 1981. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gadaleta G, Pepe G, De Candia G,
Quagliariello C, Sbisà E and Saccone C: The complete nucleotide
sequence of the Rattus norvegicus mitochondrial genome: Cryptic
signals revealed by comparative analysis between vertebrates. J Mol
Evol. 28:497–516. 1989. View Article : Google Scholar : PubMed/NCBI
|
19
|
Roe BA, Ma DP, Wilson RK and Wong JF: The
complete nucleotide sequence of the Xenopus laevis
mitochondrial genome. J Biol Chem. 260:9759–9774. 1985.PubMed/NCBI
|
20
|
Kong QP, Bandelt HJ, Sun C, Yao YG, Salas
A, Achilli A, Wang CY, Zhong L, Zhu CL, Wu SF, et al: Updating the
east asian mtDNA phylogeny: A prerequisite for the identification
of pathogenic mutations. Hum Mol Genet. 15:2076–2086. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Sprinzl M and Vassilenko KS: Compilation
of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res.
33:D139–D140. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Asano K, Suzuki T, Saito A, Wei FY,
Ikeuchi Y, Numata T, Tanaka R, Yamane Y, Yamamoto T, Goto T, et al:
Metabolic and chemical regulation of tRNA modification associated
with taurine deficiency and human disease. Nucleic Acids Res.
46:1565–1583. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sloan KE, Höbartner C and Bohnsack MT: How
RNA modification allows non-conventional decoding in mitochondria.
Cell Cycle. 16:145–146. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou M, Xue L, Chen Y, Li H, He Q, Wang B,
Meng F, Wang M and Guan MX: A hypertension-associated mitochondrial
DNA mutation introduces an m1G37 modification into tRNAMet,
altering its structure and function. J Biol Chem. 293:1425–1438.
2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Qu J, Li R, Zhou X, Tong Y, Lu F, Qian Y,
Hu Y, Mo JQ, West CE and Guan MX: The novel 4435A>G mutation in
the mitochondrial tRNAMet may modulate the phenotypic expression of
the LHON-associated ND4 G11778A mutation. Invest Ophthalmol Vis
Sci. 47:475–483. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu Y, Liang LZ, Xiao HL, Yang YL, Yu X,
Zheng J, Fang F, Zheng BJ, Tang XW, Jin LJ and Guan MX: Hearing
loss may be associated with the novel mitochondrial tRNA(Asp)
A7551G mutation in a Chinese family. Zhonghua Er Bi Yan Hou Tou
Jing Wai Ke Za Zhi. 48:978–984. 2013.(In Chinese). PubMed/NCBI
|
27
|
Meng F, He Z, Tang X, Zheng J, Jin X, Zhu
Y, Ren X, Zhou M, Wang M, Gong S, et al: Contribution of the
tRNAIle 4317A→G mutation to the phenotypic manifestation of the
deafness-associated mitochondrial 12S rRNA 1555A→G mutation. J Biol
Chem. 293:3321–3334. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Böttger EC and Schacht J: The
mitochondrion: A perpetrator of acquired hearing loss. Hear Res.
303:12–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Riva C, Donadieu E, Magnan J and Lavieille
JP: Age-related hearing loss in CD/1 mice is associated to ROS
formation and HIF target proteins up-regulation in the cochlea. Exp
Gerontol. 42:327–336. 2007. View Article : Google Scholar : PubMed/NCBI
|