1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kosary CL: FIGO stage, histology,
histologic grade, age and race as prognostic factors in determining
survival for cancers of the female gynecological system: an
analysis of 1973–87 SEER cases of cancers of the endometrium,
cervix, ovary, vulva, and vagina. Semin Surg Oncol. 10:31–46. 1994.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Cliby WA, Powell MA, Alhammadi N, Chen L,
Philip Miller J, Roland PY, Mutch DG and Bristow RE: Ovarian cancer
in the United States: Contemporary patterns of care associated with
improved survival. Gynecol Oncol. 136:11–17. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hausser J and Zavolan M: Identification
and consequences of miRNA-target interactions - beyond repression
of gene expression. Nat Rev Genet. 15:599–612. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li N, Yang L, Wang H, Yi T, Jia X, Chen C
and Xu P: miR-130a and miR-374a function as novel regulators of
cisplatin resistance in human ovarian cancer A2780 cells. PLoS One.
10:e01288862015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zou J, Liu L, Wang Q, Yin F, Yang Z, Zhang
W and Li L: Downregulation of miR-429 contributes to the
development of drug resistance in epithelial ovarian cancer by
targeting ZEB1. Am J Transl Res. 9:1357–1368. 2017.PubMed/NCBI
|
7
|
Zhu H, Yang SY, Wang J, Wang L and Han SY:
Evidence for miR-17-92 and miR-134 gene cluster regulation of
ovarian cancer drug resistance. Eur Rev Med Pharmacol Sci.
20:2526–2531. 2016.PubMed/NCBI
|
8
|
Kim TH, Jeong JY, Park JY, Kim SW, Jin HH,
Kang H, Kim G and An HJ: miR-150 enhances apoptotic and anti-tumor
effects of paclitaxel in paclitaxel-resistant ovarian cancer cells
by targeting Notch3. Oncotarget. 8:72788–72800. 2017.PubMed/NCBI
|
9
|
Yu DD, Wu Y, Zhang XH, Lv MM, Chen WX,
Chen X, Yang SJ, Shen H, Zhong SL, Tang JH and Zhao JH: Exosomes
from Adriamycin-resistant breast cancer cells transmit drug
resistance partly by delivering miR-222. Tumour Biol. 37:3227–3235.
2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X,
Shen B, Liu S, Yan D and Feng J: Cisplatin-resistant lung cancer
cell-derived exosomes increase cisplatin resistance of recipient
cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine.
12:3721–3733. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y,
Li H, Zhu X, Yao L and Zhang J: Exosomal miR-221/222 enhances
tamoxifen resistance in recipient ER-positive breast cancer cells.
Breast Cancer Res Treat. 147:423–431. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kanlikilicer P, Rashed MH, Bayraktar R,
Mitra R, Ivan C, Aslan B, Zhang X, Filant J, Silva AM,
Rodriguez-Aguayo C, et al: Ubiquitous release of exosomal tumor
suppressor miR-6126 from ovarian cancer cells. Cancer Res.
76:7194–7207. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rashed MH, Kanlikilicer P, Rodriguezaguayo
C, Pichler M, Bayraktar R, Bayraktar E, Ivan C, Filant J, Silva A,
Aslan B, et al: Exosomal miR-940 maintains SRC-mediated oncogenic
activity in cancer cells: A possible role for exosomal disposal of
tumor suppressor miRNAs. Oncotarget. 8:20145–20164. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Smyth GK: Limma: Linear models for
microarray data. Bioinformatics and computational biology solutions
using R and bioconductor. Gentleman R, Carey VJ, Huber W, Irizarry
RA and Dudoit S: Springer; New York, NY: pp. 397–420. 2005,
View Article : Google Scholar
|
15
|
Dweep H and Gretz N: miRWalk2.0: A
comprehensive atlas of microRNA-target interactions. Nat Methods.
12:6972015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kohl M, Wiese S and Warscheid B:
Cytoscape: Software for visualization and analysis of biological
networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vasaikar SV, Straub P, Wang J and Zhang B:
LinkedOmics: Analyzing multi-omics data within and across 32 cancer
types. Nucleic Acids Res. 6:D956–D963. 2018. View Article : Google Scholar
|
18
|
Huang DW, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sun X, Vale M, Jiang X, Gupta R and
Krissansen GW: Antisense HIF-1alpha prevents acquired tumor
resistance to angiostatin gene therapy. Cancer Gene Ther.
17:532–540. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tozzi F, Zhou Y, Chen J, Bose D, Fan F,
Wang J, Brusher H, Widger W, Weihua Z and Ellis LM: Evaluation of
glycolytic activity and HIF-1α expression in chemoresistant
colorectal cancer cells. J Clin Oncol. 29 (Suppl):S4152011.
View Article : Google Scholar
|
21
|
Su W, Huang L, Ao Q, Zhang Q, Tian X, Fang
Y and Lu Y: Noscapine sensitizes chemoresistant ovarian cancer
cells to cisplatin through inhibition of HIF-1α. Cancer Lett.
305:94–99. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ai Z, Yang L, Qiu S and Fan Z: Overcoming
cisplatin resistance of ovarian cancer cells by targeting
HIF-1-regulated cancer metabolism. Cancer Lett. 373:36–44. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Tan M, Gu Q, He H, Pamarthy D, Semenza GL
and Sun Y: SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1
alpha ubiquitination and degradation. Oncogene. 27:1404–1411. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Maeda Y, Suzuki T, Pan X, Chen G, Pan S,
Bartman T and Whitsett JA: CUL2 is required for the activity of
hypoxia-inducible factor and vasculogenesis. J Biol Chem.
283:16084–16092. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ghosh G, Subramanian IV, Adhikari N, Zhang
X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y and
Ramakrishnan S: Hypoxia-induced microRNA-424 targets CUL2 to
stabilize HIF-α isoforms and promotes angiogenesis. J Clin Invest.
120:4141–4154. 2010. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Park YT, Jeong JY, Lee MJ, Kim KI, Kim TH,
Kwon YD, Lee C, Kim OJ and An HJ: MicroRNAs overexpressed in
ovarian ALDH1-positive cells are associated with chemoresistance. J
Ovarian Res. 6:182013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ji HY, Lim J, Ha IS, Ji MS, Kim JH, Kim J,
Chu WN and Cho YS: MicroRNA sequencing detects miR-424-5p
up-regulation in ovarian cancer stem cells. Genes Genomics.
37:737–742. 2015. View Article : Google Scholar
|
28
|
Shen X, Xue Y, Cong H, Wang X and Ju S:
Dysregulation of serum microRNA-574-3p and its clinical
significance in hepatocellular carcinoma. Ann Clin Biochem.
55:478–484. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Igci YZ, Ozkaya M, Korkmaz H, Bozgeyik E,
Bayraktar R, Ulasli M, Erkilic S, Eraydin A and Oztuzcu S:
Expression levels of miR-30a-5p in papillary thyroid carcinoma: A
comparison between serum and fine needle aspiration biopsy samples.
Genet Test Mol Biomarkers. 19:418–423. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen WG, Chang Q, Lin Y, Meissner A, West
AE, Griffith EC, Jaenisch R and Greenberg ME: Derepression of BDNF
transcription involves calcium-dependent phosphorylation of MeCP2.
Science. 302:885–889. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wade PA: Dynamic regulation of DNA
methylation coupled transcriptional repression: BDNF regulation by
MeCP2. Bioessays. 26:217–220. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Elosta A, Kantharidis P, Zalcberg JR and
Wolffe AP: Precipitous release of methyl-CpG binding protein 2 and
histone deacetylase 1 from the methylated human multidrug
resistance gene (MDR1) on activation. Mol Cell Biol. 22:1844–1857.
2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Au CW, Siu MK, Liao X, Wong ES, Ngan HY,
Tam KF, Chan DC, Chan QK and Cheung AN: Tyrosine kinase B receptor
and BDNF expression in ovarian cancers-Effect on cell migration,
angiogenesis and clinical outcome. Cancer Lett. 281:151–161. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee J, Jiffar T and Kupferman ME: A novel
role for BDNF-TrkB in the regulation of chemotherapy resistance in
head and neck squamous cell carcinoma. PLoS One. 7:e302462012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L
and Wang Z: miR-27a modulates MDR1/P-glycoprotein expression by
targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol.
119:125–130. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu F, Wu Q, Ni Z, Lei C, Li T and Shi Y:
miR-19a/b and MeCP2 repress reciprocally to regulate multidrug
resistance in gastric cancer cells. Int J Mol Med. 42:228–236.
2018.PubMed/NCBI
|
37
|
Gao JM, Huang LZ, Huang ZG and He RQ:
Clinical value and potential pathways of miR-183-5p in bladder
cancer: A study based on miRNA-seq data and bioinformatics
analysis. Oncol Lett. 15:5056–5070. 2018.PubMed/NCBI
|
38
|
Cheng Y, Xiang G, Meng Y and Dong R:
miRNA-183-5p promotes cell proliferation and inhibits apoptosis in
human breast cancer by targeting the PDCD4. Reprod Biol.
16:225–233. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liao Y, Deng Y, Liu J, Ye Z, You Z, Yao S
and He S: miR-760 overexpression promotes proliferation in ovarian
cancer by downregulation of PHLPP2 expression. Gynecol Oncol.
143:655–663. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Teng K, Deng C, Xu J, Men Q, Lei T, Di D,
Liu T, Li W and Liu X: Nuclear localization of TEF3-1 promotes cell
cycle progression and angiogenesis in cancer. Oncotarget.
7:13827–13841. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Qiao Y, Lin SJ, Chen Y, Voon DC, Zhu F,
Chuang LS, Wang T, Tan P, Lee SC, Yeoh KG, et al: RUNX3 is a novel
negative regulator of oncogenic TEAD-YAP complex in gastric cancer.
Oncogene. 35:2664–2674. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tang J, Tao ZH, Wen D, Wan JL, Liu DL,
Zhang S, Cui JF, Sun HC, Wang L, Zhou J, et al: miR-612 suppresses
the stemness of liver cancer via Wnt/β-catenin signaling. Biochem
Biophys Res Commun. 447:210–215. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sheng L, He P, Yang X, Zhou M and Feng Q:
miR-612 negatively regulates colorectal cancer growth and
metastasis by targeting AKT2. Cell Death Dis. 6:e18082015.
View Article : Google Scholar : PubMed/NCBI
|