1
|
Chua MLK, Wee JTS, Hui EP and Chan ATC:
Nasopharyngeal carcinoma. Lancet. 387:1012–1024. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hsu MM and Tu SM: Nasopharyngeal carcinoma
in Taiwan. Clinical manifestations and results of therapy. Cancer.
52:362–368. 1983. View Article : Google Scholar : PubMed/NCBI
|
3
|
Qi X, Li J, Zhou C, Lv C and Tian M:
MicroRNA-320a inhibits cell proliferation, migration and invasion
by targeting BMI-1 in nasopharyngeal carcinoma. FEBS Lett.
588:3732–3738. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Qin DX, Hu YH, Yan JH, Xu GZ, Cai WM, Wu
XL, Cao DX and Gu XZ: Analysis of 1379 patients with nasopharyngeal
carcinoma treated by radiation. Cancer. 61:1117–1124. 1988.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Jenkin RD, Anderson JR, Jereb B, Thompson
JC, Pyesmany A, Wara WM and Hammond D: Nasopharyngeal carcinoma-a
retrospective review of patients less than thirty years of age: A
report of Children's cancer study group. Cancer. 47:360–366. 1981.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Geara FB, Glisson BS, Sanguineti G, Tucker
SL, Garden AS, Ang KK, Lippman SM, Clayman GL, Goepfert H, Peters
LJ and Hong WK: Induction chemotherapy followed by radiotherapy
versus radiotherapy alone in patients with advanced nasopharyngeal
carcinoma: Results of a matched cohort study. Cancer. 79:1279–1286.
1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
OuYang PY, Xie C, Mao YP, Zhang Y, Liang
XX, Su Z, Liu Q and Xie FY: Significant efficacies of neoadjuvant
and adjuvant chemotherapy for nasopharyngeal carcinoma by
meta-analysis of published literature-based randomized, controlled
trials. Ann Oncol. 24:2136–2146. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen L, Hu CS, Chen XZ, Hu GQ, Cheng ZB,
Sun Y, Li WX, Chen YY, Xie FY, Liang SB, et al: Adjuvant
chemotherapy in patients with locoregionally advanced
nasopharyngeal carcinoma: Long-term results of a phase 3
multicentre randomised controlled trial. Eur J Cancer. 75:150–158.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen YP, Tang LL, Yang Q, Poh SS, Hui EP,
Chan ATC, Ong WS, Tan T, Wee J, Li WF, et al: Induction
chemotherapy plus concurrent chemoradiotherapy in endemic
nasopharyngeal carcinoma: Individual patient data pooled analysis
of four randomized trials. Clin Cancer Res. 24:1824–1833. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Chua DT, Sham JS, Kwong DL, Choy DT, Au GK
and Wu PM: Prognostic value of paranasopharyngeal extension of
nasopharyngeal carcinoma. A significant factor in local control and
distant metastasis. Cancer. 78:202–210. 1996. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yan M, Kumachev A and Chan KKW: Is there
any benefit to adding adjuvant chemotherapy after concurrent
chemoradiotherapy for nasopharyngeal carcinoma? Eur J Cancer.
56:186–187. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nieder C: Influence of dose and
fractionation in intensity modulated re-irradiation of patients
with relapse of nasopharyngeal carcinoma: A randomized phase II
study. Strahlenther Onkol. 191:203–204. 2015.(In German).
View Article : Google Scholar : PubMed/NCBI
|
13
|
Setton J, Han J, Kannarunimit D, Wuu YR,
Rosenberg SA, DeSelm C, Wolden SL, Jillian Tsai C, McBride SM, Riaz
N and Lee NY: Long-term patterns of relapse and survival following
definitive intensity-modulated radiotherapy for non-endemic
nasopharyngeal carcinoma. Oral Oncol. 53:67–73. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Solomon B, Wilner KD and Shaw AT: Current
status of targeted therapy for anaplastic lymphoma
kinase-rearranged non-small cell lung cancer. Clin Pharmacol Ther.
95:15–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sullivan RJ and Flaherty KT: Resistance to
BRAF-targeted therapy in melanoma. Eur J Cancer. 49:1297–1304.
2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Knoechel B, Roderick JE, Williamson KE,
Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H,
et al: An epigenetic mechanism of resistance to targeted therapy in
T cell acute lymphoblastic leukemia. Nat Genet. 46:364–370. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Riquelme I, Saavedra K, Espinoza JA, Weber
H, Garcia P, Nervi B, Garrido M, Corvalán AH, Roa JC and Bizama C:
Molecular classification of gastric cancer: Towards a
pathway-driven targeted therapy. Oncotarget. 6:24750–24779. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Caspers M, Pavlova A, Driesen J, Harbrecht
U, Klamroth R, Kadar J, Fischer R, Kemkes-Matthes B and Oldenburg
J: Deficiencies of antithrombin, protein C and protein S-practical
experience in genetic analysis of a large patient cohort. Thromb
Haemost. 108:247–257. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Choay J, Petitou M, Lormeau JC, Sinay P,
Casu B and Gatti G: Structure-activity relationship in heparin: A
synthetic pentasaccharide with high affinity for antithrombin III
and eliciting high anti-factor Xa activity. Biochem Biophys Res
Commun. 116:492–499. 1983. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fukui H, Taniguchi A, Sakamoto S, Kawahara
S, Matsunaga T, Taira K, Tanaka S and Kamitsuji H: Antithrombin III
in children with various renal diseases. Pediatr Nephrol.
3:144–148. 1989. View Article : Google Scholar : PubMed/NCBI
|
21
|
Levy JH, Sniecinski RM, Welsby IJ and Levi
M: Antithrombin: Anti-inflammatory properties and clinical
applications. Thromb Haemost. 115:712–728. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zietek Z, Iwan-Zietek I, Kotschy M,
Wiśniewska E and Tyloch F: Antithrombin III activity in blood of
patients with renal cancer. Pol Merkur Lekarski. 2:191–192.
1997.(In Polish). PubMed/NCBI
|
23
|
Zietek Z, Iwan-Zietek I, Kotschy M,
Wiśniewska E and Tyloch F: Activity of antithrombin III in the
blood of patients with bladder cancer. Pol Merkur Lekarski.
2:268–269. 1997.(In Polish). PubMed/NCBI
|
24
|
Pal N, Kertai MD, Lakshminarasimhachar A
and Avidan MS: Pharmacology and clinical applications of human
recombinant antithrombin. Expert Opin Biol Ther. 10:1155–1168.
2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Maeda A, Ohta K, Ohta K, Nakayama Y,
Hashida Y, Toma T, Saito T, Maruhashi K and Yachie A: Effects of
antithrombin III treatment in vascular injury model of mice.
Pediatr Int. 53:747–753. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Gonzalez-Rodriguez A and Valverde AM: RNA
interference as a therapeutic strategy for the treatment of liver
diseases. Curr Pharm Des. 21:4574–4586. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Amin MB, Edge S, Greene F, Byrd DR,
Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR,
Sullivan DC, et al: American joint committee on cancer staging
manual. 8th. Springer; New York, NY: 2017
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Bei JX, Li Y, Jia WH, Feng BJ, Zhou G,
Chen LZ, Feng QS, Low HQ, Zhang H, He F, et al: A genome-wide
association study of nasopharyngeal carcinoma identifies three new
susceptibility loci. Nat Genet. 42:599–603. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Su SF, Han F, Zhao C, Huang Y, Chen CY,
Xiao WW, Li JX and Lu TX: Treatment outcomes for different
subgroups of nasopharyngeal carcinoma patients treated with
intensity-modulated radiation therapy. Chin J Cancer. 30:565–573.
2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lin S, Lu JJ, Han L, Chen Q and Pan J:
Sequential chemotherapy and intensity-modulated radiation therapy
in the management of locoregionally advanced nasopharyngeal
carcinoma: Experience of 370 consecutive cases. BMC Cancer.
10:392010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Vargas C, Swartz D, Vashi A, Blasser M,
Kasareian A, Cesaretti J, Kiley K and Terk M: Long-term outcomes
and prognostic factors in patients treated with intraoperatively
planned prostate brachytherapy. Brachytherapy. 12:120–125. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Tao CJ, Lin L, Zhou GQ, Tang LL, Chen L,
Mao YP, Zeng MS, Kang TB, Jia WH, Shao JY, et al: Comparison of
long-term survival and toxicity of cisplatin delivered weekly
versus every three weeks concurrently with intensity-modulated
radiotherapy in nasopharyngeal carcinoma. PLoS One. 9:e1107652014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Feng HX, Guo SP, Li GR, Zhong WH, Chen L,
Huang LR and Qin HY: Toxicity of concurrent chemoradiotherapy with
cetuximab for locoregionally advanced nasopharyngeal carcinoma. Med
Oncol. 31:1702014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mekaj Y, Lulaj S, Daci F, Rafuna N,
Miftari E, Hoxha H, Sllamniku X and Mekaj A: Prevalence and role of
antithrombin III, protein C and protein S deficiencies and
activated protein C resistance in Kosovo women with recurrent
pregnancy loss during the first trimester of pregnancy. J Hum
Reprod Sci. 8:224–229. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Absher E, Labarrere CA, Carter C, Haag B
and Faulk WP: The endothelial heparan sulfate-antithrombin III
natural anticoagulant pathway in normal and transplanted human
kidneys. Transplantation. 53:828–834. 1992. View Article : Google Scholar : PubMed/NCBI
|
37
|
Huang PY, Zeng TT, Li MQ, Ban X, Zhu YH,
Zhang BZ, Mai HQ, Zhang L, Guan XY and Li Y: Proteomic analysis of
a nasopharyngeal carcinoma cell line and a nasopharyngeal
epithelial cell line. Tumori. 101:676–683. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Harper JW, Adami GR, Wei N, Keyomarsi K
and Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent
inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816. 1993.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yin Y, Tainsky MA, Bischoff FZ, Strong LC
and Wahl GM: Wild-type p53 restores cell cycle control and inhibits
gene amplification in cells with mutant p53 alleles. Cell.
70:937–948. 1992. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nomura M, Shimizu S, Sugiyama T, Narita M,
Ito T, Matsuda H and Tsujimoto Y: 14-3-3 Interacts directly with
and negatively regulates pro-apoptotic Bax. J Biol Chem.
278:2058–2065. 2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pan LL, Wang AY, Huang YQ, Luo Y and Ling
M: Mangiferin induces apoptosis by regulating Bcl-2 and Bax
expression in the CNE2 nasopharyngeal carcinoma cell line. Asian
Pac J Cancer Prev. 15:7065–7068. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Satoh K, Kaneko K, Hirota M, Masamune A,
Satoh A and Shimosegawa T: Expression of survivin is correlated
with cancer cell apoptosis and is involved in the development of
human pancreatic duct cell tumors. Cancer. 92:271–278. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu G, Zhang W, Bertram P, Zheng XF and
McLeod H: Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR
pathway in common human tumors. Int J Oncol. 24:893–900.
2004.PubMed/NCBI
|
44
|
Ciruelos Gil EM: Targeting the
PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer.
Cancer Treat Rev. 40:862–871. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Schabbauer G, Tencati M, Pedersen B,
Pawlinski R and Mackman N: PI3K-Akt pathway suppresses coagulation
and inflammation in endotoxemic mice. Arterioscler Thromb Vasc
Biol. 24:1963–1969. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xu YQ, Long L, Yan JQ, Wei L, Pan MQ, Gao
HM, Zhou P, Liu M, Zhu CS, Tang BS and Wang Q: Simvastatin induces
neuroprotection in 6-OHDA-lesioned PC12 via the PI3K/AKT/caspase 3
pathway and anti-inflammatory responses. CNS Neurosci Ther.
19:170–177. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bao RK, Zheng SF and Wang XY: Selenium
protects against cadmium-induced kidney apoptosis in chickens by
activating the PI3K/AKT/Bcl-2 signaling pathway. Environ Sci Pollut
Res Int. 24:20342–20353. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sui Y, Zheng X and Zhao D: Rab31 promoted
hepatocellular carcinoma (HCC) progression via inhibition of cell
apoptosis induced by PI3K/AKT/Bcl-2/BAX pathway. Tumour Biol.
36:8661–8670. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Liu W, Ren H, Ren J, Yin T, Hu B, Xie S,
Dai Y, Wu W, Xiao Z, Yang X and Xie D: The role of
EGFR/PI3K/Akt/cyclinD1 signaling pathway in acquired middle ear
cholesteatoma. Mediators Inflamm. 2013:6512072013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Li Y, Qu X, Qu J, Zhang Y, Liu J, Teng Y,
Hu X, Hou K and Liu Y: Arsenic trioxide induces apoptosis and G2/M
phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and
thereby regulate p53 activation. Cancer Lett. 284:208–215. 2009.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Dey JH, Bianchi F, Voshol J, Bonenfant D,
Oakeley EJ and Hynes NE: Targeting fibroblast growth factor
receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs
mammary tumor outgrowth and metastasis. Cancer Res. 70:4151–4162.
2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Prasad SB, Yadav SS, Das M, Modi A, Kumari
S, Pandey LK, Singh S, Pradhan S and Narayan G: PI3K/AKT
pathway-mediated regulation of p27(Kip1) is associated with cell
cycle arrest and apoptosis in cervical cancer. Cell Oncol (Dordr).
38:215–225. 2015. View Article : Google Scholar : PubMed/NCBI
|