1
|
Abais-Battad JM, Dasinger JH, Fehrenbach
DJ and Mattson DL: Novel adaptive and innate immunity targets in
hypertension. Pharmacol Res. 120:109–115. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Agita A and Alsagaff MT: Inflammation,
immunity, and hypertension. Acta Med Indones. 49:158–165.
2017.PubMed/NCBI
|
3
|
Bomfim GF, Rodrigues FL and Carneiro FS:
Are the innate and adaptive immune systems setting hypertension on
fire? Pharmacol Res. 117:377–393. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Committee of Cardio-Cerebro-Vascular
Diseases of Gerontological Society of China and Chinese College of
Cardiovascular Physicians of Chinese Medical Doctor Association:
Chinese expert consensus on the diagnosis and treatment of
hypertension in the elderly (2017). Zhonghua Nei Ke Za Zhi.
56:885–893. 2017.(In Chinese). PubMed/NCBI
|
5
|
Jafri S and Ormiston ML: Immune regulation
of systemic hypertension, pulmonary arterial hypertension, and
preeclampsia: Shared disease mechanisms and translational
opportunities. Am J Physiol Regul Integr Comp Physiol.
313:R693–R705. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schiffrin EL: Immune mechanisms in
hypertension and vascular injury. Clin Sci (Lond). 126:267–274.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Marvar PJ, Vinh A, Thabet S, Lob HE, Geem
D, Ressler KJ and Harrison DG: T lymphocytes and vascular
inflammation contribute to stress-dependent hypertension. Biol
Psychiatry. 71:774–782. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schiffrin EL: The immune system: Role in
hypertension. Can J Cardiol. 29:543–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rodriguez-Iturbe B, Pons H and Johnson RJ:
Role of the immune system in hypertension. Physiol Rev.
97:1127–1164. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ni X, Li XZ, Fan ZR, Wang A, Zhang HC,
Zhang L, Li L, Si JQ and Ma KT: Increased expression and
functionality of the gap junction in peripheral blood lymphocytes
is associated with hypertension-mediated inflammation in
spontaneously hypertensive rats. Cell Mol Biol Lett. 23:402018.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ni X, Wang A, Zhang L, Shan LY, Zhang HC,
Li L, Si JQ, Luo J, Li XZ and Ma KT: Up-regulation of gap junction
in peripheral blood T lymphocytes contributes to the inflammatory
response in essential hypertension. PLoS One. 12:e01847732017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang HC, Zhang ZS, Zhang L, Wang A, Zhu
H, Li L, Si JQ, Li XZ and Ma KT: Connexin 43 in splenic lymphocytes
is involved in the regulation of CD4+CD25+ T
lymphocyte proliferation and cytokine production in hypertensive
inflammation. Int J Mol Med. 41:13–24. 2018.PubMed/NCBI
|
13
|
Ni X, Zhang L, Peng M, Shen TW, Yu XS,
Shan LY, Li L, Si JQ, Li XZ and Ma KT: Hydrogen sulfide attenuates
hypertensive inflammation via regulating connexin expression in
spontaneously hypertensive rats. Med Sci Monit. 24:1205–1218. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Elgueta R, Tobar JA, Shoji KF, De Calisto
J, Kalergis AM, Bono MR, Rosemblatt M and Sáez JC: Gap junctions at
the dendritic cell-T cell interface are key elements for
antigen-dependent T cell activation. J Immunol. 183:277–284. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Mendoza-Naranjo A, Bouma G, Pereda C,
Ramírez M, Webb KF, Tittarelli A, López MN, Kalergis AM, Thrasher
AJ, Becker DL and Salazar-Onfray F: Functional gap junctions
accumulate at the immunological synapse and contribute to T cell
activation. J Immunol. 187:3121–3132. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Oviedo-Orta E, Gasque P and Evans WH:
Immunoglobulin and cytokine expression in mixed lymphocyte cultures
is reduced by disruption of gap junction intercellular
communication. FASEB J. 15:768–774. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Idris-Khodja N, Mian MO, Paradis P and
Schiffrin EL: Dual opposing roles of adaptive immunity in
hypertension. Eur Heart J. 35:1238–1244. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mattson DL, James L, Berdan EA and Meister
CJ: Immune suppression attenuates hypertension and renal disease in
the Dahl salt-sensitive rat. Hypertension. 48:149–156. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wenzel UO, Bode M, Kurts C and Ehmke H:
Salt, inflammation, IL-17 and hypertension. Br J Pharmacol. doi 10:
1111/bph.14359. 2018. View Article : Google Scholar
|
20
|
Xing D, Nozell S, Chen YF, Hage F and
Oparil S: Estrogen and mechanisms of vascular protection.
Arterioscler Thromb Vasc Biol. 29:289–295. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tipton AJ and Sullivan JC: Sex differences
in T cells in hypertension. Clin Ther. 36:1882–1900. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Camilleri G, Borg M, Brincat S,
Schembri-Wismayer P, Brincat M and Calleja-Agius J: The role of
cytokines in cardiovascular disease in menopause. Climacteric.
15:524–530. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sandberg K, Ji H, Einstein G, Au A and Hay
M: Is immune system-related hypertension associated with ovarian
hormone deficiency? Exp Physiol. 101:368–374. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pollow DP, Uhrlaub J, Romero-Aleshire M,
Sandberg K, Nikolich-Zugich J, Brooks HL and Hay M: Sex differences
in T-lymphocyte tissue infiltration and development of angiotensin
II hypertension. Hypertension. 64:384–390. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chiu CZ, Wang BW, Chung TH and Shyu KG:
Angiotensin II and the ERK pathway mediate the induction of
myocardin by hypoxia in cultured rat neonatal cardiomyocytes. Clin
Sci (Lond). 119:273–282. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mori T, Kai H, Kajimoto H, Koga M, Kudo H,
Takayama N, Yasuoka S, Anegawa T, Kai M and Imaizumi T: Enhanced
cardiac inflammation and fibrosis in ovariectomized hypertensive
rats: A possible mechanism of diastolic dysfunction in
postmenopausal women. Hypertens Res. 34:496–502. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kubota Y, Umegaki K, Kagota S, Tanaka N,
Nakamura K, Kunitomo M and Shinozuka K: Evaluation of blood
pressure measured by tail-cuff methods (without heating) in
spontaneously hypertensive rats. Biol Pharm Bull. 29:1756–1758.
2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Adori M, Kiss E, Barad Z, Barabás K,
Kiszely E, Schneider A, Kövesdi D, Sziksz E, Abrahám IM, Matkó J
and Sármay G: Estrogen augments the T cell-dependent but not the
T-independent immune response. Cell Mol Life Sci. 67:1661–1674.
2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
McMaster WG, Kirabo A, Madhur MS and
Harrison DG: Inflammation, immunity, and hypertensive end-organ
damage. Circ Res. 116:1022–1033. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Singh MV, Chapleau MW, Harwani SC and
Abboud FM: The immune system and hypertension. Immunol Res.
59:243–253. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sandberg K, Ji H and Hay M: Sex-specific
immune modulation of primary hypertension. Cell Immunol.
294:95–101. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Salem ML: Estrogen, a double-edged sword:
Modulation of TH1- and TH2-mediated inflammations by differential
regulation of TH1/TH2 cytokine production. Curr Drug Targets
Inflamm Allergy. 3:97–104. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lélu K, Laffont S, Delpy L, Paulet PE,
Périnat T, Tschanz SA, Pelletier L, Engelhardt B and Guéry JC:
Estrogen receptor α signaling in T lymphocytes is required for
estradiol-mediated inhibition of Th1 and Th17 cell differentiation
and protection against experimental autoimmune encephalomyelitis. J
Immunol. 187:2386–2393. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Novella S, Heras M, Hermenegildo C and
Dantas AP: Effects of estrogen on vascular inflammation: A matter
of timing. Arterioscler Thromb Vasc Biol. 32:2035–2042. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Tipton AJ, Baban B and Sullivan JC: Female
spontaneously hypertensive rats have a compensatory increase in
renal regulatory T cells in response to elevations in blood
pressure. Hypertension. 64:557–564. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Miller AP, Feng W, Xing D, Weathington NM,
Blalock JE, Chen YF and Oparil S: Estrogen modulates inflammatory
mediator expression and neutrophil chemotaxis in injured arteries.
Circulation. 110:1664–1669. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ritzel RM, Capozzi LA and McCullough LD:
Sex, stroke, and inflammation: The potential for estrogen-mediated
immunoprotection in stroke. Horm Behav. 63:238–253. 2013.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Xing D, Oparil S, Yu H, Gong K, Feng W,
Black J, Chen YF and Nozell S: Estrogen modulates NFκB signaling by
enhancing IκBα levels and blocking p65 binding at the promoters of
inflammatory genes via estrogen receptor-β. PLoS One. 7:e368902012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Monteiro R, Teixeira D and Calhau C:
Estrogen signaling in metabolic inflammation. Mediators Inflamm.
2014:6159172014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Özdemir Kumral ZN, Kolgazi M, Üstünova S,
Kasımay Çakır Ö, Çevik ÖD, Şener G and Yeğen BÇ: Estrogen receptor
agonists alleviate cardiac and renal oxidative injury in rats with
renovascular hypertension. Clin Exp Hypertens. 38:500–509. 2016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Bhatia A, Sekhon HK and Kaur G: Sex
hormones and immune dimorphism. ScientificWorldJournal.
2014:1591502014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Willebrords J, Crespo Yanguas S, Maes M,
Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B and
Vinken M: Connexins and their channels in inflammation. Crit Rev
Biochem Mol Biol. 51:413–439. 2016. View Article : Google Scholar : PubMed/NCBI
|