1
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World Health Organization
Classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Aldape K, Zadeh G, Mansouri S,
Reifenberger G and von Deimling A: Glioblastoma: Pathology,
molecular mechanisms and markers. Acta Neuropathol. 129:829–848.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hottinger AF, Aissa AB, Espeli V, Squiban
D, Dunkel N, Vargaset MI, Hundsberger T, Mach N, Schaller K, Weber
DC, et al: Phase I study of sorafenib combined with radiation
therapy and temozolomide as first-line treatment of high-grade
glioma. Br J Cancer. 110:2655–2661. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bush NA, Chang SM and Berger MS: Current
and future strategies for treatment of glioma. Neurosurg Rev.
40:1–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Reifenberger G, Wirsching HG,
Knobbe-Thomsen CB and Weller M: Advances in the molecular genetics
of gliomas-implications for classification and therapy. Nat Rev
Clin Oncol. 14:434–452. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Andujar I, Ríos JL, Giner RM and Recio MC:
Pharmacological properties of shikonin-a review of literature since
2002. Planta Med. 79:1685–1697. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang X, Cui JH, Meng QQ, Li SS, Zhou W
and Xiao S: Advance in anti-tumor mechanisms of shikonin, alkannin
and their derivatives. Mini Rev Med Chem. 18:164–172. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Guo ZL, Li JZ, Ma YY, Qian D, Zhong JY,
Jin MM, Huang P, Che LY, Pan B, Wang Y, et al: Shikonin sensitizes
A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and
AKT pathways. BMC Cell Biol. 19:292018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Durchschein C, Hufner A, Rinner B,
Stallinger A, Deutsch A, Lohberger B, Bauer R and Kretschmer N:
Synthesis of novel shikonin derivatives and pharmacological effects
of cyclopropylacetyl shikonin on melanoma cells. Molecules.
23:E28202018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang FY, Hu Y, Que ZY, Wang P, Liu YH,
Wang ZH and Xue YX: Shikonin inhibits the migration and invasion of
human glioblastoma cells by targeting phosphorylated β-Catenin and
phosphorylated PI3K/Akt: A potential mechanism for the anti-glioma
efficacy of a traditional Chinese herbal medicine. Int J Mol Sci.
16:23823–23848. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang FL, Wang P, Liu YH, Liu LB, Liu XB,
Li Z and Xue YX: Topoisomerase I inhibitors, shikonin and
topotecan, inhibit growth and induce apoptosis of glioma cells and
glioma stem cells. PLoS One. 8:e818152013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou Z, Lu B, Wang C, Wang Z, Piao T, Luo
M, Meng F, Chi G, Luo Y and Ge P: RIP1 and RIP3 contribute to
shikonin-induced DNA double-strand breaks in glioma cells via
increase of intracellular reactive oxygen species. Cancer Lett.
390:77–90. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xiong L, Edwards CR III and Zhou L: The
biological function and clinical utilization of CD147 in human
diseases: A review of the current scientific literature. Int J Mol
Sci. 15:17411–17441. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yin H, Shao Y and Chen X: The effects of
CD147 on the cell proliferation, apoptosis, invasion, and
angiogenesis in glioma. Neurol Sci. 38:129–136. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li H, Xi Z, Dai X, Wu W, Li Y, Liu Y and
Zhang H: CD147 and glioma: A meta-analysis. J Neurooncol.
134:145–156. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guo N, Zhang K, Lv MH, Miao JL, Chen ZN
and Zhu P: CD147 and CD98 complex-mediated homotypic aggregation
attenuates the CypA-induced chemotactic effect on Jurkat T cells.
Mol Immunol. 63:253–263. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wiench B, Eichhorn T, Paulsen M and
Efferth T: Shikonin directly targets mitochondria and causes
mitochondrial dysfunction in cancer cells. Evid Based Complement
Alternat Med. 2012:7260252012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhai T, Hei Z, Ma Q, Liang H, Xu Y, Zhang
Y, Jin L, Han C and Wang J: Shikonin induces apoptosis and G0/G1
phase arrest of gallbladder cancer cells via the JNK signaling
pathway. Oncol Rep. 38:3473–3480. 2017.PubMed/NCBI
|
19
|
Chen C, Xiao W, Huang L, Yu G, Ni J, Yang
L, Wan R and Hu G: Shikonin induces apoptosis and necroptosis in
pancreatic cancer via regulating the expression of RIP1/RIP3 and
synergizes the activity of gemcitabine. Am J Transl Res.
9:5507–5517. 2017.PubMed/NCBI
|
20
|
Liang W, Cui J, Zhang K, Xi H, Cai A, Li
J, Gao Y, Hu C, Liu Y, Lu Y, et al: Shikonin induces ROS-based
mitochondria-mediated apoptosis in colon cancer. Oncotarget.
8:109094–109106. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shahsavari Z, Karami-Tehrani F and Salami
S: Targeting cell necroptosis and apoptosis induced by Shikonin via
receptor interacting protein kinases in estrogen receptor positive
breast cancer cell line, MCF-7. Anticancer Agents Med Chem.
18:245–254. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lu B, Gong X, Wang ZQ, Ding Y, Wang C, Luo
TF, Piao MH, Meng FK, Chi GF, Luo YN and Ge PF: Shikonin induces
glioma cell necroptosis in vitro by ROS overproduction and
promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin.
38:1543–1553. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ondroušková E and Vojtěšek B: Programmed
cell death in cancer cells. Klin Onkol. 27 (Suppl 1):S7–S14.
2014.(In Czech). View Article : Google Scholar : PubMed/NCBI
|
24
|
Redza-Dutordoir M and Averill-Bates DA:
Activation of apoptosis signalling pathways by reactive oxygen
species. Biochim Biophys Acta. 1863:2977–2992. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Balaban RS, Nemoto S and Finkel T:
Mitochondria, oxidants, and aging. Cell. 120:483–495. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Gong K and Li W: Shikonin, a Chinese
plant-derived naphthoquinone, induces apoptosis in hepatocellular
carcinoma cells through reactive oxygen species: A potential new
treatment for hepatocellular carcinoma. Free Radic Biol Med.
51:2259–2271. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fei F, Li S, Fei Z and Chen ZN: The roles
of CD147 in the progression of gliomas. Expert Rev Anticancer Ther.
15:1351–1359. 2015. View Article : Google Scholar : PubMed/NCBI
|