1
|
Clark T, Maximin S, Meier J, Pokharel S
and Bhargava P: Hepatocellular carcinoma: Review of epidemiology,
screening, imaging diagnosis, response assessment, and treatment.
Curr Probl Diagn Radiol. 44:479–486. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Roxburgh P and Evans TR: Systemic therapy
of hepatocellular carcinoma: Are we making progress? Adv Ther.
25:1089–1104. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Baek SH, Kim C, Lee JH, Nam D, Lee J, Lee
SG, Chung WS, Jang HJ, Kim SH and Ahn KS: Cinobufagin exerts
anti-proliferative and pro-apoptotic effects through the modulation
ros-mediated mapks signaling pathway. Immunopharmacol
Immunotoxicoz. 37:265–273. 2015. View Article : Google Scholar
|
4
|
Yu CH, Kan SF, Pu HF, Jea Chien E and Wang
PS: Apoptotic signaling in bufalin- and cinobufagin-treated
androgen- dependent and -independent human prostate cancer cells.
Cancer Sci. 99:2467–2476. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pereira DG, Salgado MAR, Rocha SC, Santos
HL, Villar JAFP, Contreras RG, Fontes CFL, Barbosa LA and Cortes
VF: Involvement of Src signaling in the synergistic effect between
cisplatin and digoxin on cancer cell viability. J Cell Biochem.
119:3352–3362. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gan PP, Zhou YY, Zhong MZ, Peng Y, Li L
and Li JH: Endoplasmic reticulum stress promotes autophagy and
apoptosis and reduces chemotherapy resistance in mutant p53 lung
cancer cells. Cell Physiol Biochem. 44:133–151. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bahrami A, Hesari A, Khazaei M, Hassanian
SM, Ferns GA and Avan A: The therapeutic potential of targeting the
braf mutation in patients with colorectal cancer. J Cell Physiol.
233:2162–2169. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li BT, Ross DS, Aisner DL, Chaft JE, Hsu
M, Kako SL, Kris MG, Varella-Garcia M and Arcila ME: Her2
amplification and her2 mutation are distinct molecular targets in
lung cancers. J Thorac Oncol. 11:414–419. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhu VW, Cui JJ, Fernandez-Rocha M, Schrock
AB, Ali SM and Ou SI: Identification of a novel t1151k alk mutation
in a patient with alk-rearranged nsclc with prior exposure to
crizotinib and ceritinib. Lung Cancer. 110:32–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kang N, Wang Y, Guo S, Ou Y, Wang G, Chen
J, Li D and Zhan Q: Mutant TP53 G245C and R273H promote cellular
malignancy in esophageal squamous cell carcinoma. BMC Cell Biol.
19:162018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tuna M, Amos CI and Mills GB: Genome-wide
analysis of head and neck squamous cell carcinomas reveals HPV,
TP53, smoking and alcohol-related allele-based acquired uniparental
disomy genomic alterations. Neoplasia. 21:197–205. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Amelio I, Mancini M, Petrova V, Cairns RA,
Vikhreva P, Nicolai S, Marini A, Antonov AA, Le Quesne J, Baena
Acevedo JD, et al: p53 mutants cooperate with HIF-1 in
transcriptional regulation of extracellular matrix components to
promote tumor progression. Proc Natl Acad Sci USA.
115:E10869–E10878. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Na K, Sung JY and Kim HS: Tp53 mutation
status of tubo-ovarian and peritoneal high-grade serous carcinoma
with a wild-type p53 immunostaining pattern. Anticancer Res.
37:6697–6703. 2017.PubMed/NCBI
|
14
|
Xu Z, Wang F, Fan F, Gu Y, Shan N, Meng X,
Cheng S, Liu Y, Wang C, Song Y and Xu R: Quantitative proteomics
reveals that the inhibition of na(+)/k(+)-atpase activity affects
s-phase progression leading to a chromosome segregation disorder by
attenuating the aurora a function in hepatocellular carcinoma
cells. J Proteome Res. 14:4594–4602. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Goos JA, Coupe VM, Diosdado B, Delis-Van
Diemen PM, Karga C, Beliën JA, Carvalho B, van den Tol MP, Verheul
HM, Geldof AA, et al: Aurora kinase a (AURKA) expression in
colorectal cancer liver metastasis is associated with poor
prognosis. Br J Cancer. 109:2445–2452. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Woo JK, Kang JH, Shin D, Park SH, Kang K,
Nho CW, Seong JK, Lee SJ and Oh SH: Daurinol enhances the efficacy
of radiotherapy in lung cancer via suppression of aurora kinase A/B
expression. Mol Cancer Ther. 14:1693–1704. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Treekitkarnmongkol W, Katayama H, Kai K,
Sasai K, Jones JC, Wang J, Shen L, Sahin AA, Gagea M, Ueno NT, et
al: Aurora kinase-a overexpression in mouse mammary epithelium
induces mammary adenocarcinomas harboring genetic alterations
shared with human breast cancer. Carcinogenesis. 37:1180–1189.
2016.PubMed/NCBI
|
18
|
Zhang J, Li B, Yang Q, Zhang P and Wang H:
Prognostic value of aurora kinase a (AURKA) expression among solid
tumor patients. A systematic review and meta-analysis. Jpn J Clin
Oncol. 45:629–636. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lo Iacono M, Monica V, Saviozzi S, Ceppi
P, Bracco E, Papotti M and Scagliotti GV: Aurora kinase a
expression is associated with lung cancer histological-subtypes and
with tumor de-differentiation. J Transl Med. 9:1002011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen C, Song G, Xiang J, Zhang H, Zhao S
and Zhan Y: AURKA promotes cancer metastasis by regulating
epithelial-mesenchymal transition and cancer stem cell properties
in hepatocellular carcinoma. Biochem Biophys Res Commun.
486:514–520. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fischer M: Census and evaluation of p53
target genes. Oncogene. 36:3943–3956. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yue X, Zhao Y, Xu Y, Zheng M, Feng Z and
Hu W: Mutant p53 in cancer: Accumulation, gain-of-function, and
therapy. J Mol Biol. 429:1595–1606. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Singh S, Vaughan CA, Frum RA, Grossman SR,
Deb S and Palit Deb S: Mutant p53 establishes targetable tumor
dependency by promoting unscheduled replication. J Clin Invest.
127:1839–1855. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Botchkarev VA and Flores ER: P53/p63/p73
in the epidermis in health and disease. Cold Spring Harb Perspect
Med. 4(pii): a0152482014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kasai F, Hirayama N, Ozawa M, Satoh M and
Kohara A: HuH-7 reference genome profile: Complex karyotype
composed of massive loss of heterozygosity. Hum Cell. 31:261–267.
2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li Q, Liu X, Jin K, Lu M, Zhang C, Du X
and Xing B: Nat10 is upregulated in hepatocellular carcinoma and
enhances mutant p53 activity. BMC Cancer. 17:6052017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cavic M, Spasic J, Krivokuca A, Boljevic
I, Kuburovic M, Radosavljevic D and Jankovic R: TP53 and DNA-repair
gene polymorphisms genotyping as a low-cost lung adenocarcinoma
screening tool. J Clin Pathol. 72:75–80. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hsieh Li SM, Liu ST, Chang YL, Ho CL and
Huang SM: Metformin causes cancer cell death through downregulation
of p53-dependent differentiated embryo chondrocyte 1. J Biomed Sci.
25:812018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dabiri Y, Kalman S, Gurth CM, Kim JY,
Mayer V and Cheng X: The essential role of TAp73 in
bortezomib-induced apoptosis in p53-deficient colorectal cancer
cells. Sci Rep. 7:54232017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zawacka-Pankau J, Kostecka A, Sznarkowska
A, Hedström E and Kawiak A: P73 tumor suppressor protein: A close
relative of p53 not only in structure but also in anti-cancer
approach? Cell Cycle. 9:720–728. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Babula P, Masarik M, Adam V, Provaznik I
and Kizek R: From na+/k+-atpase and cardiac glycosides to
cytotoxicity and cancer treatment. Anticancer Agents Med Chem.
13:1069–1087. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kaushik V, Yakisich JS, Azad N, Kulkarni
Y, Venkatadri R, Wright C, Rojanasakul Y and Iyer AKV: Anti-tumor
effects of cardiac glycosides on human lung cancer cells and lung
tumorspheres. J Cell Physiol. 232:2497–2507. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kaushik V, Azad N, Yakisich JS and Iyer
AK: Antitumor effects of naturally occurring cardiac glycosides
convallatoxin and peruvoside on human er+ and triple-negative
breast cancers. Cell Death Discov. 3:170092017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Calderon-Montano JM, Burgos-Moron E, Orta
ML, Maldonado- Navas D, Garcia-Dominguez I and Lopez-Lazaro M:
Evaluating the cancer therapeutic potential of cardiac glycosides.
Biomed Res Int. 2014:7949302014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang ZY, Hong D, Nam SH, Kim JM, Paik YH,
Joh JW, Kwon CH, Park JB, Choi GS, Jang KY, et al: Sirt1 regulates
oncogenesis via a mutant p53-dependent pathway in hepatocellular
carcinoma. J Hepatol. 62:121–130. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li T, Chen Y, Zhang J and Liu S: LncRNA
TUG1 promotes cells proliferation and inhibits cells apoptosis
through regulating AURKA in epithelial ovarian cancer cells.
Medicine (Baltimore). 97:E121312018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zheng F, Yue C, Li G, He B, Cheng W, Wang
X, Yan M, Long Z, Qiu W, Yuan Z, et al: Nuclear aurka acquires
kinase-independent transactivating function to enhance breast
cancer stem cell phenotype. Nat Commun. 7:101802016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lee MH, Cho Y, Kim DH, Woo HJ, Yang JY,
Kwon HJ, Yeon MJ, Park M, Kim SH, Moon C, et al: Menadione induces
G2/M arrest in gastric cancer cells by down-regulation of CDC25C
and proteasome mediated degradation of CDK1 and cyclin B1. Am J
Transl Res. 8:5246–5255. 2016.PubMed/NCBI
|
40
|
Padmanabhan A, Candelaria N, Wong KK,
Nikolai BC, Lonard DM, O'Malley BW and Richards JS: USP15-dependent
lysosomal pathway controls p53-R175H turnover in ovarian cancer
cells. Nat Commun. 9:12702018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Melino G, Bernassola F, Ranalli M, Yee K,
Zong WX, Corazzari M, Knight RA, Green DR, Thompson C and Vousden
KH: P73 induces apoptosis via puma transactivation and bax
mitochondrial translocation. J Biol Chem. 279:8076–8083. 2004.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Yoon MK, Ha JH, Lee MS and Chi SW:
Structure and apoptotic function of p73. BMB Rep. 48:81–90. 2015.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Huang L, Li A, Liao G, Yang F, Yang J,
Chen X and Jiang X: Curcumol triggers apoptosis of p53 mutant
triple-negative human breast cancer MDA-MB 231 cells via activation
of p73 and PUMA. Oncol Lett. 14:1080–1088. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Katayama H, Wang J, Treekitkarnmongkol W,
Kawai H, Sasai K, Zhang H, Wang H, Adams HP, Jiang S, Chakraborty
SN, et al: Aurora kinase-A inactivates DNA damage-induced apoptosis
and spindle assembly checkpoint response functions of p73. Cancer
Cell. 21:196–211. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Dar AA, Belkhiri A, Ecsedy J, Zaika A and
El-Rifai W: Aurora kinase a inhibition leads to p73-dependent
apoptosis in p53-deficient cancer cells. Cancer Res. 68:8998–9004.
2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Riley MF, You MJ, Multani AS and Lozano G:
Mdm2 overexpression and p73 loss exacerbate genomic instability and
dampen apoptosis, resulting in B-cell lymphoma. Oncogene.
35:358–365. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Knickelbein K, Tong J, Chen D, Wang YJ,
Misale S, Bardelli A, Yu J and Zhang L: Restoring PUMA induction
overcomes KRAS-mediated resistance to anti-EGFR antibodies in
colorectal cancer. Oncogene. 37:4599–4610. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bean GR, Ganesan YT, Dong Y, Takeda S, Liu
H, Chan PM, Huang Y, Chodosh LA, Zambetti GP, Hsieh JJ and Cheng
EH: PUMA and BIM are required for oncogene inactivation-induced
apoptosis. Sci Signal. 6:ra202013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Guikema JE, Amiot M and Eldering E:
Exploiting the pro-apoptotic function of NOXA as a therapeutic
modality in cancer. Expert Opin Ther Targets. 21:767–779. 2017.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Cazzalini O, Scovassi AI, Savio M, Stivala
LA and Prosperi E: Multiple roles of the cell cycle inhibitor
p21(CDKN1A) in the DNA damage response. Mutat Res. 704:12–20. 2010.
View Article : Google Scholar : PubMed/NCBI
|