1
|
Page RC and Kornman KS: The pathogenesis
of human periodontitis: An introduction. Periodontol 2000. 14:9–11.
1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hajishengallis G: Immunomicrobial
pathogenesis of periodontitis: Keystones, pathobionts, and host
response. Trends Immunol. 35:3–11. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cochran DL: Inflammation and bone loss in
periodontal disease. J Periodontol 79 (8 Suppl). S1569–S1576. 2008.
View Article : Google Scholar
|
4
|
Cheng WC, Hughes FJ and Taams LS: The
presence, function and regulation of IL-17 and Th17 cells in
periodontitis. J Clin Periodontol. 41:541–549. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen XT, Chen LL, Tan JY, Shi DH, Ke T and
Lei LH: Th17 and Th1 lymphocytes are correlated with chronic
periodontitis. Immunol Invest. 45:243–254. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen XT, Tan JY, Lei LH and Chen LL:
Cytokine levels in plasma and gingival crevicular fluid in chronic
periodontitis. Am J Dent. 28:9–12. 2015.PubMed/NCBI
|
7
|
Cardoso CR, Garlet GP, Crippa GE, Rosa AL,
Junior WM, Rossi MA and Silva JS: Evidence of the presence of T
helper type 17 cells in chronic lesions of human periodontal
disease. Oral Microbiol Immunol. 24:1–6. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
da Costa TA, Silva MJ, Alves PM, Chica JE,
Barcelos EZ, Giani MA, Garlet GP, Silva JS, Junior VR, Rodrigues DB
and Cardoso CR: Inflammation biomarkers of advanced disease in
nongingival tissues of chronic periodontitis patients. Mediators
Inflamm. 2015:9837822015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hienz SA, Paliwal S and Ivanovski S:
Mechanisms of bone resorption in periodontitis. J Immunol Res.
2015:6154862015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fossiez F, Djossou O, Chomarat P,
Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E,
Saeland S, et al: T cell interleukin-17 induces stromal cells to
produce proinflammatory and hematopoietic cytokines. J Exp Med.
183:2593–2603. 1996. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jovanovic DV, Di Battista JA,
Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F and
Pelletier JP: IL-17 stimulates the production and expression of
proinflammatory cytokines, IL-beta and TNF-alpha, by human
macrophages. J Immunol. 160:3513–3521. 1998.PubMed/NCBI
|
12
|
Lubberts E, van den Bersselaar L,
Oppers-Walgreen B, Schwarzenberger P, Coenen-de Roo CJ, Kolls JK,
Joosten LA and van den Berg WB: IL-17 promotes bone erosion in
murine collagen-induced arthritis through loss of the receptor
activator of NF-kappa B ligand/osteoprotegerin balance. J Immunol.
170:2655–2662. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Feng Y, He D, Yao Z and Klionsky DJ: The
machinery of macroautophagy. Cell Res. 24:24–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hale AN, Ledbetter DJ, Gawriluk TR and
Rucker EB III: Autophagy: Regulation and role in development.
Autophagy. 9:951–972. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pierrefite-Carle V, Santucci-Darmanin S,
Breuil V, Camuzard O and Carle GF: Autophagy in bone: Self-eating
to stay in balance. Ageing Res Rev. 24:206–217. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gelman A and Elazar Z: Autophagic factors
cut to the bone. Dev Cell. 21:808–810. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
DeSelm CJ, Miller BC, Zou W, Beatty WL,
van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL and
Virgin HW: Autophagy proteins regulate the secretory component of
osteoclastic bone resorption. Dev Cell. 21:966–974. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chung YH, Choi B, Song DH, Song Y, Kang
SW, Yoon SY, Kim SW, Lee HK and Chang EJ: Interleukin-1β promotes
the LC3-mediated secretory function of osteoclast precursors by
stimulating the Ca2+-dependent activation of ERK. Int J Biochem
Cell Biol. 54:198–207. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lin NY, Stefanica A and Distler JH:
Autophagy: A key pathway of TNF-induced inflammatory bone loss.
Autophagy. 9:1253–1255. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xing L and Boyce BF: RANKL-based
osteoclastogenic assays from murine bone marrow cells. Methods Mol
Biol. 1130:307–313. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y, Xiong Y, Chen X, Chen C, Zhu Z
and Li L: Therapeutic effect of bone marrow mesenchymal stem cells
pretreated with acetylsalicylic acid on experimental periodontitis
in rats. Int Immunopharmacol. 54:320–328. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Castro ΜL, Franco GC, Branco-de-Almeida
LS, Anbinder AL, Cogo-Muller K, Cortelli SC, Duarte S, Saxena D and
Rosalen PL: Downregulation of proteinase-activated receptor-2,
interleukin-17, and other proinflammatory genes by subantimicrobial
doxycycline dose in a rat periodontitis model. J Periodontol.
87:203–210. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Teitelbaum SL and Ross FP: Genetic
regulation of osteoclast development and function. Nat Rev Genet.
4:638–649. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Asagiri M and Takayanagi H: The molecular
understanding of osteoclast differentiation. Bone. 40:251–264.
2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cekici A, Kantarci A, Hasturk H and Van
Dyke TE: Inflammatory and immune pathways in the pathogenesis of
periodontal disease. Periodontol 2000. 64:57–80. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tompkins KA: The osteoimmunology of
alveolar bone loss. Connect Tissue Res. 57:69–90. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sprangers S, Schoenmaker T, Cao Y, Everts
V and de Vries TJ: Different blood-borne human osteoclast
precursors respond in distinct ways to IL-17A. J Cell Physiol.
231:1249–1260. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Adamopoulos IE, Chao CC, Geissler R,
Laface D, Blumenschein W, lwakura Y, McClanahan T and Bowman EP:
Interleukin-17A upregulates receptor activator of NF-kappaB on
osteoclast precursors. Arthritis Res Ther. 12:R292010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Boyce BF: Advances in the regulation of
osteoclasts and osteoclast functions. J Dent Res. 92:860–867. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kitami S, Tanaka H, Kawato T, Tanabe N,
Katono-Tani T, Zhang F, Suzuki N, Yonehara Y and Maeno M: IL-17A
suppresses the expression of bone resorption-related proteinases
and osteoclast differentiation via IL-17RA or IL-17RC receptors in
RAW264.7 cells. Biochimie. 92:398–404. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wijekoon S, Bwalya EC, Fang J, Kim S,
Hosoya K and Okumura M: Chronological differential effects of
pro-inflammatory cytokines on RANKL-induced osteoclast
differentiation of canine bone marrow-derived macrophages. J Vet
Med Sci. 79:2030–2035. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Grigoriadis AE, Wang ZQ, Cecchini MG,
Hofestetter W, Felix R, Fleisch HA and Wanger EF: c-Fos: A key
regulator of osteoclast-macrophage lineage determination and bone
remodeling. Science. 266:443–448. 1994. View Article : Google Scholar : PubMed/NCBI
|
35
|
Asagiri M, Sato K, Usami T, Ochi S,
Nishina H, Yoshida H, Morita I, Wagner EF, Mark TW, Serfling E and
Takayanagi H: Autoamplification of NFATc1 expression determines its
essential role in bone homeostasis. J Exp Med. 202:1261–1269. 2005.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Costa AG, Cusano NE, Silva BC, Cremers S
and Bilezikian JP: Cathepsin K: Its skeletal actions and role as a
therapeutic target in osteoporosis. Nat Rev Rheumatol. 7:447–456.
2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hayman AR: Tartrate-resistant acid
phosphatase (TRAP) and the osteoclast/immune cell dichotomy.
Autoimmunity. 41:218–223. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang Z and Klionsky DJ: Eaten alive: A
history of macroautophagy. Nat Cell Biol. 12:814–822. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Lin NY, Beyer C, Giessl A, Kireva T,
Scholtysek C, Uderhardt S, Munoz LE, Dees C, Distler A, Wirtz S, et
al: Autophagy regulates TNFα-mediated joint destruction in
experimental arthritis. Ann Rheum Dis. 72:761–768. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ke D, Fu X, Xue Y, Wu H, Zhang Y, Chen X
and Hou J: IL-17A regulates the autophagic activity of osteoclast
precursors through RANKL-JNK1 signaling during osteoclastogenesis
in vitro. Biochem Biophys Res Commun. 497:890–896. 2018.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Xue Y, Liang Z, Fu X, Wang T, Xie Q and Ke
D: IL-17A modulates osteoclast precursors' apoptosis through
autophagy-TRAF3 signaling during osteoclastogenesis. Biochem
Biophys Res Commun. 508:1088–1092. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ng AY, Tu C, Shen S, Xu D, Oursler MJ, Qu
J and Yang S: Comparative characterization of osteoclasts derived
from murine bone marrow macrophages and RAW 264.7 cells using
quantitative proteomics. JBMR Plus. 2:328–340. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chung YH, Jang Y, Choi B, Song DH, Lee EJ,
Kim SM, Song Y, Kang SW, Yoon SY and Chang EJ: Beclin-1 is required
for RANKL-induced osteoclast differentiation. J Cell Physiol.
229:1963–1971. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li RF, Chen G, Ren JG, Zhang W, Wu ZX, Liu
B, Zhao Y and Zhao YF: The adaptor protein p62 is involved in
RANKL-induced autophagy and osteoclastogenesis. J Histochem
Cytochem. 62:879–888. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lin NY, Chen CW, Kagwiria R, Liang R,
Beyer C, Distler A, Luther J, Engelke K, Schett G and Distler JH:
Inactivation of autophagy ameliorates glucocorticoid-induced and
ovariectomy-induced bone loss. Ann Rheum Dis. 75:1203–1210. 2016.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Adamopoulos IE, Suzuki E, Chao CC, Gorman
D, Adda S, Maverakis E, Zarbalis K, Geissler R, Asio A,
Blumenschein WM, et al: IL-17A gene transfer induces bone loss and
epidermal hyperplasia associated with psoriatic arthritis. Ann
Rheum Dis. 74:1284–1292. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Park MJ, Park HS, Oh HJ, Lim JY, Yoon BY,
Kim HY, Cho ΜL and Cho SG: IL-17-deficient allogeneic bone marrow
transplantation prevents the induction of collagen-induced
arthritis in DBA/1J mice. Exp Mol Med. 44:694–705. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Koenders MI, Lubberts E, Oppers-Walgreen
B, van den Bersselaar L, Helsen MM, Di Padova FE, Boots AM, Gram H,
Joosten LA and van den Berg WB: Blocking of interleukin-17 during
reactivation of experimental arthritis prevents joint inflammation
and bone erosion by decreasing RANKL and interleukin-1. Am J
Pathol. 167:141–149. 2005. View Article : Google Scholar : PubMed/NCBI
|
49
|
Nakae S, Nambu A, Sudo K and Iwakura Y:
Suppression of immune induction of collagen-induced arthritis in
IL-17-deficient mice. J Immunol. 171:6173–6177. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Araujo VM, Melo IM and Lima V:
Relationship between periodontitis and rheumatoid arthritis: Review
of the Literature. Mediators Inflamm. 2015:2590742015. View Article : Google Scholar : PubMed/NCBI
|