1
|
Lv H, Wang Q, Wu S, Yang L, Ren P, Yang Y,
Gao J and Li L: Neonatal hypoxic ischemic encephalopathy-related
biomarkers in serum and cerebrospinal fluid. Clin Chim Acta.
450:282–297. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Silveira RC and Procianoy RS: Hypothermia
therapy for newborns with hypoxic ischemic encephalopathy. J
Pediatr (Rio J) 91(6 Suppl 1). S78–S83. 2015. View Article : Google Scholar
|
3
|
Douglas-Escobar M and Weiss MD:
Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA
Pediatr. 169:397–403. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vannucci RC, Connor JR, Mauger DT, Palmer
C, Smith MB, Towfighi J and Vannucci SJ: Rat model of perinatal
hypoxic-ischemic brain damage. J Neurosci Res. 55:158–163. 1999.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Perlman JM: Intervention strategies for
neonatal hypoxic-ischemic cerebral injury. Clin Ther. 28:1353–1365.
2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li L, Klebe D, Doycheva D, McBride DW,
Krafft PR, Flores J, Zhou C, Zhang JH and Tang J: G-CSF ameliorates
neuronal apoptosis through GSK-3β inhibition in neonatal
hypoxia-ischemia in rats. Exp Neurol. 263:141–149. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jansen AH, Reits EA and Hol EM: The
ubiquitin proteasome system in glia and its role in
neurodegenerative diseases. Front Mol Neurosci. 7:732014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Massey LK, Mah AL and Monteiro MJ:
Ubiquilin regulates presenilin endoproteolysis and modulates
gamma-secretase components, Pen-2 and nicastrin. Biochem J.
391:513–525. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Natunen T, Takalo M, Kemppainen S, Leskelä
S, Marttinen M, Kurkinen KMA, Pursiheimo JP, Sarajärvi T,
Viswanathan J, Gabbouj S, et al: Relationship between ubiquilin-1
and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse
brain and cell-based models. Neurobiol Dis. 85:187–205. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang FF and Li J: Inhibitory effect of
chloroquine derivatives on presenilin 1 and ubiquilin 1 expression
in Alzheimer's disease. Int J Clin Exp Pathol. 8:7640–7643.
2015.PubMed/NCBI
|
11
|
Rutherford NJ, Lewis J, Clippinger AK,
Thomas MA, Adamson J, Cruz PE, Cannon A, Xu G, Golde TE, Shaw G, et
al: Unbiased screen reveals ubiquilin-1 and −2 highly associated
with huntingtin inclusions. Brain Res. 1524:62–73. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Institute of Laboratory Animal Resources
(US), . Committee on Care, Use of Laboratory Animals, National
Institutes of Health (US). Division of Research Resources. Guide
for the care and use of laboratory animals. National Academies.
1985.
|
13
|
Rice JE III, Vannucci RC and Brierley JB:
The influence of immaturity on hypoxic ischemic brain damage in the
rat. Ann Neurol. 9:131–141. 1981. View Article : Google Scholar : PubMed/NCBI
|
14
|
Takalo M, Haapasalo A, Natunen T,
Viswanathan J, Kurkinen KM, Tanzi RE, Soininen H and Hiltunen M:
Targeting ubiquilin-1 in Alzheimer's disease. Expert Opin Ther
Targets. 17:795–810. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gadhave K, Bolshette N, Ahire A, Pardeshi
R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF
and Balea M: The ubiquitin proteasomal system: A potential target
for the management of Alzheimer's disease. J Cell Mol Med.
20:1392–1407. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu Y, Lü L, Hettinger CL, Dong G, Zhang
D, Rezvani K, Wang X and Wang H: Ubiquilin-1 protects cells from
oxidative stress and ischemic stroke caused tissue injury in mice.
J Neurosci. 34:2813–2821. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
N'Diaye EN, Kajihara KK, Hsieh I, Morisaki
H, Debnath J and Brown EJ: PLIC proteins or ubiquilins regulate
autophagy-dependent cell survival during nutrient starvation. EMBO
Rep. 10:173–179. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yadav S, Singh N, Shah PP, Rowbotham DA,
Malik D, Srivastav A, Shankar J, Lam WL, Lockwood WW and Beverly
LJ: MIR155 regulation of ubiquilin1 and ubiquilin2: Implications in
cellular protection and tumorigenesis. Neoplasia. 19:321–332. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Y, Lu J, Zhao X, Feng Y, Lv S, Mu Y,
Wang D, Fu H, Chen Y and Li Y: Prognostic significance of
Ubiquilin1 expression in invasive breast cancer. Cancer Biomark.
15:635–643. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bao J, Jiang X, Zhu X, Dai G, Dou R, Liu
X, Sheng H, Liang Z and Yu H: Clinical significance of ubiquilin 1
in gastric cancer. Medicine (Baltimore). 97:e97012018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shah PP, Lockwood WW, Saurabh K, Kurlawala
Z, Shannon SP, Waigel S, Zacharias W and Beverly LJ: Ubiquilin1
represses migration and epithelial-to-mesenchymal transition of
human non-small cell lung cancer cells. Oncogene. 34:1709–1717.
2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Viswanathan J, Haapasalo A, Kurkinen KM,
Natunen T, Mäkinen P, Bertram L, Soininen H, Tanzi RE and Hiltunen
M: Ubiquilin-1 modulates γ secretase mediated ε-site cleavage in
neuronal cells. Biochemistry. 52:3899–3912. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Satoh J, Tabunoki H, Ishida T, Saito Y and
Arima K: Ubiquilin-1 immunoreactivity is concentrated on Hirano
bodies and dystrophic neurites in Alzheimer's disease brains.
Neuropathol Appl Neurobiol. 39:817–830. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu Z, Ruan Y, Yue W, Zhu Z, Hartmann T,
Beyreuther K and Zhang D: GM1 up-regulates Ubiquilin 1 expression
in human neuroblastoma cells and rat cortical neurons. Neurosci
Lett. 407:59–63. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Whiteley AM, Prado MA, Peng I, Abbas AR,
Haley B, Paulo JA, Reichelt M, Katakam A, Sagolla M, Modrusan Z, et
al: Ubiquilin1 promotes antigen-receptor mediated proliferation by
eliminating mislocalized mitochondrial proteins. Elife.
6:e264352017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu Y, Qiao F and Wang H: Enhanced
proteostasis in post-ischemic stroke mouse brains by ubiquilin-1
promotes functional recovery. Cell Mol Neurobiol. 37:1325–1329.
2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nomura Y: Neuronal apoptosis and
protection: Effects of nitric oxide and endoplasmic
reticulum-related proteins. Biol Pharm Bull. 27:961–963. 2004.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ko HS, Uehara T and Nomura Y: Role of
ubiquilin associated with protein-disulfide isomerase in the
endoplasmic reticulum in stress-induced apoptotic cell death. J
Biol Chem. 277:35386–35392. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gill MB and Perez-Polo JR: Hypoxia
ischemia-mediated cell death in neonatal rat brain. Neurochem Res.
33:2379–2389. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ekert P, MacLusky N, Luo XP, Lehotay DC,
Smith B, Post M and Tanswell AK: Dexamethasone prevents apoptosis
in a neonatal rat model of hypoxic-ischemic encephalopathy (HIE) by
a reactive oxygen species-independent mechanism. Brain Res.
747:9–17. 1997. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hernández-Jiménez M, Sacristán S, Morales
C, García-Villanueva M, García-Fernández E, Alcázar A, González VM
and Martín ME: Apoptosis-related proteins are potential markers of
neonatal hypoxic-ischemic encephalopathy (HIE) injury. Neurosci
lett. 558:143–148. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kojima T, Ueda Y, Sato A, Sameshima H and
Ikenoue T: Comprehensive gene expression analysis of cerebral
cortices from mature rats after neonatal hypoxic-ischemic brain
injury. J Mol Neurosci. 49:320–327. 2013. View Article : Google Scholar : PubMed/NCBI
|