1
|
Cho NH, Shaw JE, Karuranga S, Huang Y, da
Rocha Fernandes JD, Ohlrogge AW and Malanda B: IDF Diabetes Atlas:
Global estimates of diabetes prevalence for 2017 and projections
for 2045. Diabetes Res Clin Pract. 138:271–281. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hooper LV and Macpherson AJ: Immune
adaptations that maintain homeostasis with the intestinal
microbiota. Nat Rev Immunol. 10:159–169. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vickery BP, Scurlock AM, Jones SM and Burk
AW: Mechanisms of immune tolerance relevant to food allergy. J
Allergy Clin Immunol. 127:576–586. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Steele-Mortimer O: The
Salmonella-containing vacuole: Moving with the times. Curr Opin
Microbiol. 11:38–45. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ohkura N, Kitagawa Y and Sakaguchi S:
Development and maintenance of regulatory T cells. Immunity.
38:414–423. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lindley S, Dayan CM, Bishop A, Roep BO,
Peakman M and Tree TI: Defective suppressor function in
CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes.
54:92–99. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Putnam AL, Vendrame F, Dotta F and
Gottlieb PA: CD4+CD25high regulatory T cells
in human autoimmune diabetes. J Autoimmun. 24:55–62. 2005.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang XX, Qiao YC, Li W, Zou X, Chen YL,
Shen J, Liao QY, Zhang QJ, He L and Zhao HL: Human amylin induces
CD4+Foxp3+ regulatory T cells in the
protection from autoimmune diabetes. Immunol Res. 66:179–186. 2018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Eizirik DL and Mandrup-Poulsen T: A choice
of death-the signal-transduction of immune-mediated beta-cell
apoptosis. Diabetologia. 44:2115–2133. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Serreze DV, Chapman HD, Varnum DS, Hanson
MS, Reifsnyder PC, Richard SD, Fleming SA, Leiter EH and Shultz LD:
B lymphocytes are essential for the initiation of T cell-mediated
autoimmune diabetes: Analysis of a new ‘speed congenic’ stock of
NOD.Ig mu null mice. J Exp Med. 184:2049–2053. 1996. View Article : Google Scholar : PubMed/NCBI
|
11
|
Salahuddin M, Jalalpure SS and Gadge NB:
Antidiabetic activity of aqueous bark extract of Cassia glauca in
streptozotocin-induced diabetic rats. Can J Physiol Pharmacol.
88:153–160. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zenk SF, Jantsch J and Hensel M: Role of
Salmonella enterica lipopolysaccharide in activation of dendritic
cell functions and bacterial containment. J Immunol. 183:2697–2707.
2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Voedisch S, Koenecke C, David S, Herbrand
H, Förster R, Rhen M and Pabst O: Mesenteric lymph nodes confine
dendritic cell-mediated dissemination of Salmonella enterica
serovar Typhimurium and limit systemic disease in mice. Infect
Immun. 77:3170–3180. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Guariguata L, Whiting DR, Hambleton I,
Beagley J, Linnenkamp U and Shaw JE: Global estimates of diabetes
prevalence for 2013 and projections for 2035. Diabetes Res Clin
Pract. 103:137–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bezuglova AM, Konenkova LP, Doronin BM,
Buneva VN and Nevinsky GA: Affinity and catalytic heterogeneity and
metal-dependence of polyclonal myelin basic protein-hydrolyzing
IgGs from sera of patients with systemic lupus erythematosus. J Mol
Recognit. 24:960–974. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Steinman RM: Dendritic cells in vivo: A
key target for a new vaccine science. Immunity. 29:319–324. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Pulendran B, Tang H and Manicassamy S:
Programming dendritic cells to induce T(H)2 and tolerogenic
responses. Nat Immunol. 11:647–655. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bekiaris V, Persson EK and Agace WW:
Intestinal dendritic cells in the regulation of mucosal immunity.
Immunol Rev. 260:86–101. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ko HJ and Chang SY: Regulation of
intestinal immune system by dendritic cells. Immune Netw. 15:1–8.
2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Coombes JL and Powrie F: Dendritic cells
in intestinal immune regulation. Nat Rev Immunol. 8:435–446. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Schulz O, Jaensson E, Persson EK, Liu X,
Worbs T, Agace WW and Pabst O: Intestinal CD103+, but
not CX3CR1+, antigen sampling cells migrate in lymph and
serve classical dendritic cell functions. J Exp Med. 206:3101–3114.
2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jaensson E, Uronen-Hansson H, Pabst O,
Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F,
Johansson-Lindbom B and Agace WW: Small intestinal
CD103+ dendritic cells display unique functional
properties that are conserved between mice and humans. J Exp Med.
205:2139–2149. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Boehm F, Martin M, Kesselring R, Schiechl
G, Geissler EK, Schlitt HJ and Fichtner-Feigl S: Deletion of
Foxp3+ regulatory T cells in genetically targeted mice
supports development of intestinal inflammation. BMC Gastroenterol.
12:972012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jang MH, Sougawa N, Tanaka T, Hirata T,
Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang BG, et al: CCR7
is critically important for migration of dendritic cells in
intestinal lamina propria to mesenteric lymph nodes. J Immunol.
176:803–810. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Correction to Lancet Diabetes Endocrinol
2018; 6, . 186-96. Lancet Diabetes Endocrinol. 6:e42018.PubMed/NCBI
|
27
|
Matteoli G, Mazzini E, Iliev ID, Mileti E,
Fallarino F and Puccetti P: Gut CD103+ dendritic cells
express indoleamine 2,3-dioxygenase which influences T regulatory/T
effector cell balance and oral tolerance induction. Gut.
59:595–604. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shiokawa A, Tanabe K, Tsuji NM Sato R and
Hachimura S: Hachimura, IL-10 and IL-27 producing dendritic cells
capable of enhancing IL-10 production of T cells are induced in
oral tolerance. Immunol Lett. 125:7–14. 2009. View Article : Google Scholar : PubMed/NCBI
|