1
|
Fisher RS, van Emde Boas W, Blume W, Elger
C, Genton P, Lee P and Engel J Jr: Epileptic seizures and epilepsy:
Definitions proposed by the International League Against Epilepsy
(ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia.
46:470–472. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Guangming Z, Wenjing Z, Jiuluan L, Zhaohui
S, Bingqing Z, Gaoxiang S and Huancong Z: Long-term therapeutic
effects of corticoamygdalohippocampectomy for bilateral mesial
temporal lobe epilepsy. Surg Neurol Int. 4:1472013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kandratavicius L, Ruggiero RN, Hallak JE,
Garcia-Cairasco N and Leite JP: Pathophysiology of mood disorders
in temporal lobe epilepsy. Rev Bras Psiquiatr. 34 (Suppl
2):S233–S245. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Braakman HM, Vaessen MJ, Jansen JF,
Debeij-van Hall MH, de Louw A, Hofman PA, Vles JS, Aldenkamp AP and
Backes WH: Frontal lobe connectivity and cognitive impairment in
pediatric frontal lobe epilepsy. Epilepsia. 54:446–454. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Harden TK, Boyer JL and Nicholas RA:
P2-purinergic receptors: Subtype-associated signaling responses and
structure. Annu Rev Pharmacol Toxicol. 35:541–579. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang F, Pracheil T, Thornton J and Liu Z:
Adenosine triphosphate (ATP) is a candidate signaling molecule in
the mitochondria-to-nucleus retrograde response pathway. Genes
(Basel). 4:86–100. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dal Ben D, Buccioni M, Lambertucci C,
Marucci G, Thomas A and Volpini R: Purinergic P2X receptors:
Structural models and analysis of ligand-target interaction. Eur J
Med Chem. 89:561–580. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Booth JW, Tam FW and Unwin RJ: P2
purinoceptors: Renal pathophysiology and therapeutic potential.
Clin Nephrol. 78:154–163. 2012. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Baines A, Parkinson K, Sim JA, Bragg L,
Thompson CR and North RA: Functional properties of five
Dictyostelium discoideum P2X receptors. J Biol Chem.
288:20992–21000. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hopfner M, Lemmer K, Jansen A, Hanski C,
Riecken EO, Gavish M, Mann B, Buhr H, Glassmeier G and Scherübl H:
Expression of functional P2-purinergic receptors in primary
cultures of human colorectal carcinoma cells. Biochem Biophys Res
Commun. 251:811–817. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Grygorowicz T, Sulejczak D and Struzynska
L: Expression of purinergic P2X7 receptor in rat brain during the
symptomatic phase of experimental autoimmune encephalomyelitis and
after recovery of neurological deficits. Acta Neurobiol Exp (Wars).
71:65–73. 2011.PubMed/NCBI
|
12
|
Norenberg W, Schunk J, Fischer W, Sobottka
H, Riedel T, Oliveira JF, Franke H and Illes P:
Electrophysiological classification of P2X7 receptors in rat
cultured neocortical astroglia. Br J Pharmacol. 160:1941–1952.
2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Eleftheriadis T, Pissas G, Karioti A,
Antoniadi G, Golfinopoulos S, Liakopoulos V, Mamara A, Speletas M,
Koukoulis G and Stefanidis I: Uric acid induces caspase-1
activation, IL-1β secretion and P2X7 receptor dependent
proliferation in primary human lymphocytes. Hippokratia.
17:141–145. 2013.PubMed/NCBI
|
14
|
Skaper SD, Debetto P and Giusti P: The
P2X7 purinergic receptor: From physiology to neurological
disorders. FASEB J. 24:337–345. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Héja L: Astrocytic target mechanisms in
epilepsy. Curr Med Chem. 21:755–763. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kuchukhidze G, Koppelstaetter F,
Unterberger I, Dobesberger J, Walser G, Höfler J, Zamarian L,
Haberlandt E, Rostasy K, Ortler M, et al: Midbrain-hindbrain
malformations in patients with malformations of cortical
development and epilepsy: A series of 220 patients. Epilepsy Res.
106:181–190. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lorigados-Pedre L, Morales-Chacon L,
Pavón-Fuentes N, Serrano-Sánchez T, Robinson-Agramonte MA,
García-Navarro ME and Bender-del Busto JE: Immunological disorders
in epileptic patients are associated to the epileptogenic focus
localization. Rev Neurol. 39:101–104. 2004.(In Spanish). PubMed/NCBI
|
19
|
Peng WF, Ding J, Mao LY, Li X, Liang L,
Chen CZ, Cheng WZ, Fan W and Wang X: Increased ratio of
glutamate/glutamine to creatine in the right hippocampus
contributes to depressive symptoms in patients with epilepsy.
Epilepsy Behav. 29:144–149. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Menon R, Radhakrishnan A and Radhakrishnan
K: Status epilepticus. J Assoc Physicians India 61 (8 Suppl).
S58–S63. 2013.
|
21
|
Grabenstatter HL, Del AY, Carlsen J, Wempe
MF, White AM, Cogswell M, Russek SJ and Brooks-Kayal AR: The effect
of STAT3 inhibition on status epilepticus and subsequent
spontaneous seizures in the pilocarpine model of acquired epilepsy.
Neurobiol Dis. 62:73–85. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sakamoto K, Inukai M, Mori A and Nakahara
T: Brilliant Blue G protects against photoreceptor injury in a
murine endotoxin-induced uveitis model. Exp Eye Res. 177:45–49.
2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bartlett R, Sluyter V, Watson D, Sluyter R
and Yerbury JJ: P2X7 antagonism using Brilliant Blue G reduces body
weight loss and prolongs survival in female SOD1G93A
amyotrophic lateral sclerosis mice. PeerJ. 5:e30642017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hussmann KL, Samuel MA, Kim KS, Diamond MS
and Fredericksen BL: Differential replication of pathogenic and
nonpathogenic strains of West Nile virus within astrocytes. J
Virol. 87:2814–2822. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Benediktsson AM, Marrs GS, Tu JC, Worley
PF, Rothstein JD, Bergles DE and Dailey ME: Neuronal activity
regulates glutamate transporter dynamics in developing astrocytes.
Glia. 60:175–188. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kozela E, Juknat A and Vogel Z: Modulation
of astrocyte activity by cannabidiol, a nonpsychoactive
cannabinoid. Int J Mol Sci. 18(pii): E16692017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shen HY, Sun H, Hanthorn MM, Zhi Z, Lan
JQ, Poulsen DJ, Wang RK and Boison D: Overexpression of adenosine
kinase in cortical astrocytes and focal neocortical epilepsy in
mice. J Neurosurg. 120:628–638. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Peixoto-Santos JE, Velasco TR,
Galvis-Alonso OY, Araujo D, Kandratavicius L, Assirati JA, Carlotti
CG, Scandiuzzi RC, Santos AC and Leite JP: Temporal lobe epilepsy
patients with severe hippocampal neuron loss but normal hippocampal
volume: Extracellular matrix molecules are important for the
maintenance of hippocampal volume. Epilepsia. 56:1562–1570. 2015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Proper EA, Oestreicher AB, Jansen GH,
Veelen CW, van Rijen PC, Gispen WH and de Graan PN:
Immunohistochemical characterization of mossy fibre sprouting in
the hippocampus of patients with pharmaco-resistant temporal lobe
epilepsy. Brain 123 (Pt 1). 19–30. 2000.
|
30
|
Swamy AH, Patel NL, Gadad PC, Koti BC,
Patel UM, Thippeswamy AH and Manjula DV: Neuroprotective activity
of pongamia pinnata in monosodium glutamate-induced neurotoxicity
in rats. Indian J Pharm Sci. 75:657–663. 2013.PubMed/NCBI
|
31
|
Zhu S and Paoletti P: Allosteric
modulators of NMDA receptors: Multiple sites and mechanisms. Curr
Opin Pharmacol. 20:14–23. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jiang S, Wang YQ, Xu CF, Li YN, Guo R and
Li L: Involvement of connexin43 in the infrasonic noise-induced
glutamate release by cultured astrocytes. Neurochem Res.
39:833–842. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Morales I and Rodriguez M: Self-induced
accumulation of glutamate in striatal astrocytes and basal ganglia
excitotoxicity. Glia. 60:1481–1494. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sheean RK, Lau CL, Shin YS, O'Shea RD and
Beart PM: Links between L-glutamate transporters, Na+/K+-ATPase and
cytoskeleton in astrocytes: Evidence following inhibition with
rottlerin. Neuroscience. 254:335–346. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee ES, Sidoryk M, Jiang H, Yin Z and
Aschner M: Estrogen and tamoxifen reverse manganese-induced
glutamate transporter impairment in astrocytes. J Neurochem.
110:530–544. 2009. View Article : Google Scholar : PubMed/NCBI
|