1
|
Dietz H: Marfan syndrome. In: Adam MP,
Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K and Amemiya
A (eds). GeneReviews. University of Washington, Seattle, Bookshelf
ID. NBK13352017.
|
2
|
Shi Y and Massagué J: Mechanisms of
TGF-beta signaling from cell membrane to the nucleus. Cell.
113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tandon A, Tovey JC, Sharma A, Gupta R and
Mohan RR: Role of transforming growth factor Beta in corneal
function, biology and pathology. Curr Mol Med. 10:565–578. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Pervan CL, Lautz JD, Blitzer AL, Langert
KA and Stubbs EB Jr: Rho GTPase signaling promotes constitutive
expression and release of TGF-β2 by human trabecular meshwork
cells. Exp Eye Res. 146:95–102. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ochiai Y and Ochiai H: Higher
concentration of transforming growth factor-beta in aqueous humor
of glaucomatous eyes and diabetic eyes. Jpn J Ophthalmol.
46:249–253. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Habashi JP, Judge DP, Holm TM, Cohn RD,
Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, et al:
Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse
model of Marfan syndrome. Science. 312:117–121. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Neptune ER, Frischmeyer PA, Arking DE,
Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY and Dietz HC:
Dysregulation of TGF-beta activation contributes to pathogenesis in
Marfan syndrome. Nat Genet. 33:407–411. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Isogai Z, Ono RN, Ushiro S, Keene DR, Chen
Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB and Sakai
LY: Latent transforming growth factor beta-binding protein 1
interacts with fibrillin and is a microfibril-associated protein. J
Biol Chem. 278:2750–2757. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hynes RO: The extracellular matrix: Not
just pretty fibrils. Science. 326:1216–1219. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gomez D, Coyet A, Ollivier V, Jeunemaitre
X, Jondeau G, Michel JB and Vranckx R: Epigenetic control of
vascular smooth muscle cells in Marfan and non-Marfan thoracic
aortic aneurysms. Cardiovasc Res. 89:446–456. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mu Y, Gudey SK and Landström M: Non-Smad
signaling pathways. Cell Tissue Res. 347:11–20. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kang JS, Liu C and Derynck R: New
regulatory mechanisms of TGF-beta receptor function. Trends Cell
Biol. 19:385–394. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Derynck R and Zhang YE: Smad-dependent and
Smad- independent pathways in TGF-beta family signalling. Nature.
425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee MK, Pardoux C, Hall MC, Lee PS,
Warburton D, Qing J, Smith SM and Derynck R: TGF-beta activates Erk
MAP kinase signalling through direct phosphorylation of ShcA. EMBO
J. 26:3957–3967. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yamashita M, Fatyol K, Jin C, Wang X, Liu
Z and Zhang YE: TRAF6 mediates Smad-independent activation of JNK
and p38 by TGF-beta. Mol Cell. 31:918–924. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Holm TM, Habashi JP, Doyle JJ, Bedja D,
Chen Y, van Erp C, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, et al:
Noncanonical TGFβ signaling contributes to aortic aneurysm
progression in Marfan syndrome mice. Science. 332:358–361. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Gomes LR, Terra LF, Wailemann RA, Labriola
L and Sogayar MC: TGF-β1 modulates the homeostasis between MMPs and
MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive
breast cancer cells. BMC cancer. 12:262012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chung AW, Au-Yeung K, Sandor GG, Judge DP,
Dietz HC and van-Breemen C: Loss of elastic fiber integrity and
reduction of vascular smooth muscle contraction resulting from the
upregulated activities of matrix metalloproteinase-2 and −9 in the
thoracic aortic aneurysm in Marfan syndrome. Circ Res. 101:512–522.
2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Y, Ait-Oufella H, Herbin O, Bonnin P,
Ramkhelawon B, Taleb S, Huang J, Offenstadt G, Combadière C, Rénia
L, et al: TGF-beta activity protects against inflammatory aortic
aneurysm progression and complications in angiotensin II-infused
mice. J Clin Invest. 120:422–432. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Haneline M and Lewkovich GN: A narrative
review of pathophysiological mechanisms associated with cervical
artery dissection. J Can Chiropr Assoc. 51:146–157. 2007.PubMed/NCBI
|
21
|
Nataatmadja M, West J and West M:
Overexpression of transforming growth factor-beta is associated
with increased hyaluronan content and impairment of repair in
Marfan syndrome aortic aneurysm. Circulation 114 (1 Suppl).
I371–I377. 2006.
|
22
|
Chaudhry SS, Cain SA, Morgan A, Dallas SL,
Shuttleworth CA and Kielty CM: Fibrillin-1 regulates the
bioavailability of TGFbeta1. J Cell Biol. 176:355–367. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
ten-Dijke P and Arthur HM: Extracellular
control of TGFbeta signalling in vascular development and disease.
Nat Rev Mol Cell Biol. 8:857–869. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nataatmadja M, West M, West J, Summers K,
Walker P, Nagata M and Watanabe T: Abnormal extracellular matrix
protein transport associated with increased apoptosis of vascular
smooth muscle cells in marfan syndrome and bicuspid aortic valve
thoracic aortic aneurysm. Circulation. 108 (Suppl 1):II329–II334.
2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Di-Girolamo N, Verma MJ, McCluskey PJ,
Lloyd A and Wakefield D: Increased matrix metalloproteinases in the
aqueous humor of patients and experimental animals with uveitis.
Curr Eye Res. 15:1060–1068. 1996. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sachdev NH, Di-Girolamo N, Nolan TM,
McCluskey PJ, Wakefield D and Coroneo MT: Matrix metalloproteinases
and tissue inhibitors of matrix metalloproteinases in the human
lens: Implications for cortical cataract formation. Invest
Ophthalmol Vis Sci. 45:4075–4082. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tamiya S, Wormstone IM, Marcantonio JM,
Gavrilovic J and Duncan G: Induction of matrix metalloproteinases 2
and 9 following stress to the lens. Exp Eye Res. 71:591–597. 2000.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Seomun Y, Kim J, Lee EH and Joo CK:
Overexpression of matrix metalloproteinase-2 mediates phenotypic
transformation of lens epithelial cells. Biochem J. 358:41–48.
2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dwivedi DJ, Pino G, Banh A, Nathu Z,
Howchin D, Margetts P, Sivak JG and West-Mays JA: Matrix
metalloproteinase inhibitors suppress transforming growth
factor-beta-induced subcapsular cataract formation. Am J Pathol.
168:69–79. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
de-Iongh RU, Wederell E, Lovicu FJ and
McAvoy JW: Transforming growth factor-beta-induced
epithelial-mesenchymal transition in the lens: A model for cataract
formation. Cells Tissues Organs. 179:43–55. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li J, Tang X and Chen X: Comparative
effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on
proliferation, migration, and extracellular matrix production in a
human lens cell line. Exp Eye Res. 92:173–179. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sinpitaksakul SN, Pimkhaokham A,
Sanchavanakit N and Pavasant P: TGF-beta1 induced MMP-9 expression
in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res
Commun. 371:713–718. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yao J, Yang W, Liu Y, Sun YX and Jiang Q:
Dexamethasone inhibits TGF-β2-induced migration of human lens
epithelial cells: implications for posterior capsule opacification
prevention. Mol Med Rep. 5:1509–1513. 2012.PubMed/NCBI
|
34
|
Alapure BV, Praveen MR, Gajjar D, Vasavada
AR, Rajkumar S and Johar K: Matrix metalloproteinase-9 activity in
human lens epithelial cells of cortical, posterior subcapsular, and
nuclear cataracts. J Cataract Refract Surg. 34:2063–2067. 2008.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Rösch S, Ramer R, Brune K and Hinz B:
R(+)-methanandamide and other cannabinoids induce the expression of
cyclooxygenase-2 and matrix metalloproteinases in human
nonpigmented ciliary epithelial cells. J Pharmacol Exp Ther.
316:1219–1228. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
McBrien NA, Lawlor P and Gentle A: Scleral
remodeling during the development of and recovery from axial myopia
in the tree shrew. Invest Ophthalmol Vis Sci. 41:3713–3719.
2000.PubMed/NCBI
|
37
|
Chu SC, Hu DN, Yang SF, Yang PY, Hsieh YS,
Huang SM, Yu G and McCormick SA: Uveal melanocytes produce matrix
metalloproteinases-2 and −9 in vitro. Pigment Cell Res. 17:636–642.
2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Weinreb RN and Lindsey JD:
Metalloproteinase gene transcription in human ciliary muscle cells
with latanoprost. Invest Ophthalmol Vis Sci. 43:716–722.
2002.PubMed/NCBI
|
39
|
Oh DJ, Martin JL, Williams AJ, Peck RE,
Pokorny C, Russell P, Birk DE and Rhee DJ: Analysis of expression
of matrix metalloproteinases and tissue inhibitors of
metalloproteinases in human ciliary body after latanoprost. Invest
Ophthalmol Vis Sci. 47:953–963. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lan YQ, Zhang C, Xiao JH, Zhuo YH, Guo H,
Peng W and Ge J: Suppression of IkappaBalpha increases the
expression of matrix metalloproteinase-2 in human ciliary muscle
cells. Mol Vis. 15:1977–1987. 2009.PubMed/NCBI
|
41
|
Alexander JP, Samples JR, Van-Buskirk EM
and Acott TS: Expression of matrix metalloproteinases and inhibitor
by human trabecular meshwork. Invest Ophthalmol Vis Sci.
32:172–180. 1991.PubMed/NCBI
|
42
|
Pang IH, Hellberg PE, Fleenor DL, Jacobson
N and Clark AF: Expression of matrix metalloproteinases and their
inhibitors in human trabecular meshwork cells. Invest Ophthalmol
Vis Sci. 44:3485–3493. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bandyopadhyay M and Rohrer B: Matrix
metalloproteinase activity creates pro-angiogenic environment in
primary human retinal pigment epithelial cells exposed to
complement. Invest Ophthalmol Vis Sci. 53:1953–1961. 2012.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zeng A, Zeng S, Cheng Y and Xiao Q:
Modulation of matrix metalloproteinase and TIMP-1 expression by
TGF-beta1 in cultured human RPE cells. J Huazhong Univ Sci
Technolog Med Sci. 26:363–365. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Christian PG, Harkin DG, Rayner C and
Schmid KL: Comparative effects of posterior eye cup tissues from
myopic and hyperopic chick eyes on cultured scleral fibroblasts.
Exp Eye Res. 107:11–20. 2013. View Article : Google Scholar : PubMed/NCBI
|