1
|
Hoy D, Brooks P, Woolf A, Blyth F, March
L, Bain C, Baker P, Smith E and Buchbinder R: Assessing risk of
bias in prevalence studies: Modification of an existing tool and
evidence of interrater agreement. J Clin Epidemiol. 65:934–939.
2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
de Schepper EI, Damen J, van Meurs JB,
Ginai AZ, Popham M, Hofman A, Koes BW and Bierma-Zeinstra SM: The
association between lumbar disc degeneration and low back pain: The
influence of age, gender, and individual radiographic features.
Spine (Phila Pa 1976). 35:531–536. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Magnier C, Boiron O, Wendling-Mansuy S,
Chabrand P and Deplano V: Nutrient distribution and metabolism in
the intervertebral disc in the unloaded state: A parametric study.
J Biomech. 42:100–108. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Raj PP: Intervertebral disc:
Anatomy-physiology-pathophysiology-treatment. Pain Pract. 8:18–44.
2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Grunhagen T, Shirazi-Adl A, Fairbank JC
and Urban JP: Intervertebral disk nutrition: A review of factors
influencing concentrations of nutrients and metabolites. Orthop
Clin North Am. 42465–477. (vii)2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shirazi-Adl A, Taheri M and Urban JP:
Analysis of cell viability in intervertebral disc: Effect of
endplate permeability on cell population. J Biomech. 43:1330–1336.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ding F, Shao ZW and Xiong LM: Cell death
in intervertebral disc degeneration. Apoptosis. 18:777–785. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kang R, Li H, Ringgaard S, Rickers K, Sun
H, Chen M, Xie L and Bünger C: Interference in the endplate
nutritional pathway causes intervertebral disc degeneration in an
immature porcine model. Int Orthop. 38:1011–1017. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ring A, Kim YM and Kahn M: Wnt/catenin
signaling in adult stem cell physiology and disease. Stem Cell Rev.
10:512–525. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang Y, Li YP, Paulson C, Shao JZ, Zhang
X, Wu M and Chen W: Wnt and the Wnt signaling pathway in bone
development and disease. Front Biosci (Landmark Ed). 19:379–407.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lara-Castillo N and Johnson ML: LRP
receptor family member associated bone disease. Rev Endocr Metab
Disord. 16:141–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Joiner DM, Ke J, Zhong Z, Xu HE and
Williams BO: LRP5 and LRP6 in development and disease. Trends
Endocrinol Metab. 24:31–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Aberle H, Bauer A, Stappert J, Kispert A
and Kemler R: Beta-catenin is a target for the ubiquitin-proteasome
pathway. EMBO J. 16:3797–3804. 1997. View Article : Google Scholar : PubMed/NCBI
|
15
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hiyama A, Sakai D, Risbud MV, Tanaka M,
Arai F, Abe K and Mochida J: Enhancement of intervertebral disc
cell senescence by WNT/β-catenin signaling-induced matrix
metalloproteinase expression. Arthritis Rheum. 62:3036–3047. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen J, Jia YS, Liu GZ, Sun Q, Zhang F, Ma
S and Wang YJ: Role of LncRNA TUG1 in intervertebral disc
degeneration and nucleus pulposus cells via regulating
Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun.
491:668–674. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang J, Chen H, Cao P, Wu X, Zang F, Shi
L, Liang L and Yuan W: Inflammatory cytokines induce
caveolin-1/β-catenin signalling in rat nucleus pulposus cell
apoptosis through the p38 MAPK pathway. Cell Prolif. 49:362–372.
2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Iwata M, Aikawa T, Hakozaki T, Arai K,
Ochi H, Haro H, Tagawa M, Asou Y and Hara Y: Enhancement of Runx2
expression is potentially linked to β-catenin accumulation in
canine intervertebral disc degeneration. J Cell Physiol.
230:180–190. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ning B, Wang P, Pei X, Kang Y, Song J,
Wang D, Zhang W and Ma R: Dual function of β-catenin in articular
cartilage growth and degeneration at different stages of postnatal
cartilage development. Int Orthop. 36:655–664. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ding L, Zeng Q, Wu J, Li D, Wang H, Lu W,
Jiang Z and Xu G: Caveolin1 regulates oxidative stress-induced
senescence in nucleus pulposus cells primarily via the p53/p21
signaling pathway in vitro. Mol Med Rep. 16:9521–9527. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu HG, Zheng Q, Song JX, Li J, Wang H, Liu
P, Wang J, Wang CD and Zhang XL: Intermittent cyclic mechanical
tension promotes endplate cartilage degeneration via canonical Wnt
signaling pathway and E-cadherin/β-catenin complex cross-talk.
Osteoarthritis Cartilage. 24:158–168. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang H, Yuan C, Wu C, Qian J, Shi Q, Li X,
Zhu X and Zou J: The role of TGF-β1/Smad2/3 pathway in
platelet-rich plasma in retarding intervertebral disc degeneration.
J Cell Mol Med. 20:1542–1549. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xie H, Jing Y, Xia J, Wang X, You C and
Yan J: Aquaporin 3 protects against lumbar intervertebral disc
degeneration via the Wnt/β-catenin pathway. Int J Mol Med.
37:859–864. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Smolders LA, Meij BP, Onis D, Riemers FM,
Bergknut N, Wubbolts R, Grinwis GC, Houweling M, Groot Koerkamp MJ,
van Leenen D, et al: Gene expression profiling of early
intervertebral disc degeneration reveals a down-regulation of
canonical Wnt signaling and caveolin-1 expression: Implications for
development of regenerative strategies. Arthritis Res Ther.
15:R232013. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Sanges D, Romo N, Simonte G, Di Vicino U,
Tahoces AD, Fernandez E and Cosma MP: Wnt/β-catenin signaling
triggers neuron reprogramming and regeneration in the mouse retina.
Cell Rep. 4:271–286. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gruber HE, Ingram JA, Davis DE and Hanley
EJ Jr: Increased cell senescence is associated with decreased cell
proliferation in vivo in the degenerating human annulus. Spine J.
9:210–215. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jeong SW, Lee JS and Kim KW: In vitro
lifespan and senescence mechanisms of human nucleus pulposus
chondrocytes. Spine J. 14:499–504. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Feng C, Liu H, Yang M, Zhang Y, Huang B
and Zhou Y: Disc cell senescence in intervertebral disc
degeneration: Causes and molecular pathways. Cell Cycle.
15:1674–1684. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
van Deursen JM: The role of senescent
cells in ageing. Nature. 509:439–446. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Munoz-Espin D and Serrano M: Cellular
senescence: From physiology to pathology. Nat Rev Mol Cell Biol.
15:482–496. 2014. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Sharpless NE and Sherr CJ: Forging a
signature of in vivo senescence. Nat Rev Cancer. 15:397–408. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Hee HT, Chuah YJ, Tan BH, Setiobudi T and
Wong HK: Vascularization and morphological changes of the endplate
after axial compression and distraction of the intervertebral disc.
Spine (Phila Pa 1976). 36:505–511. 2011. View Article : Google Scholar : PubMed/NCBI
|