1
|
Soliotis FC and Moutsopoulos HM: Sjogren's
syndrome. Autoimmunity. 37:305–307. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhou Y, Jin L, Kong F, Zhang H, Fang X,
Chen Z, Wang G and Li X and Li X: Clinical and immunological
consequences of total glucosides of paeony treatment in Sjögren's
syndrome: A randomized controlled pilot trial. Int Immunopharmacol.
39:314–319. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mavragani CP and Moutsopoulos HM:
Sjögren's syndrome. Annu Rev Pathol. 9:273–285. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xu J, Wang D, Liu D, Fan Z, Zhang H, Liu
O, Ding G, Gao R, Zhang C, Ding Y, et al: Allogeneic mesenchymal
stem cell treatment alleviates experimental and clinical Sjögren
syndrome. Blood. 120:3142–3151. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tzioufas AG, Kapsogeorgou EK and
Moutsopoulos HM: Pathogenesis of Sjögren's syndrome: What we know
and what we should learn. J Autoimmun. 39:4–8. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Moriyama M, Hayashida JN, Toyoshima T,
Ohyama Y, Shinozaki S, Tanaka A, Maehara T and Nakamura S:
Cytokine/chemokine profiles contribute to understanding the
pathogenesis and diagnosis of primary Sjögren's syndrome. Clin Exp
Immunol. 169:17–26. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mavragani CP: Mechanisms and new
strategies for primary Sjögren's syndrome. Annu Rev Med.
68:331–343. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Roescher N, Tak PP and Illei GG: Cytokines
in Sjogren's syndrome: Potential therapeutic targets. Ann Rheum
Dis. 69:945–948. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vignali DA and Kuchroo VK: IL-12 family
cytokines: Immunological playmakers. Nat Immunol. 13:722–728. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kastelein RA, Hunter CA and Cua DJ:
Discovery and biology of IL-23 and IL-27: related but functionally
distinct regulators of inflammation. Annu Rev Immunol. 25:221–242.
2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bikker A, van Woerkom JM, Kruize AA,
Wenting-van Wijk M, de Jager W, Bijlsma JW, Lafeber FP and van Roon
JA: Increased expression of interleukin-7 in labial salivary glands
of patients with primary Sjögren's syndrome correlates with
increased inflammation. Arthritis Rheum. 62:969–977. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Manoussakis MN, Boiu S, Korkolopoulou P,
Kapsogeorgou EK, Kavantzas N, Ziakas P, Patsouris E and
Moutsopoulos HM: Rates of infiltration by macrophages and dendritic
cells and expression of interleukin-18 and interleukin-12 in the
chronic inflammatory lesions of Sjögren's syndrome: Correlation
with certain features of immune hyperactivity and factors
associated with high risk of lymphoma development. Arthritis Rheum.
56:3977–3988. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hayashi Y, Haneji N and Hamano H: Cytokine
gene expression and autoantibody production in Sjögren's syndrome
of MRL/lpr mice. Autoimmunity. 23:269–277. 1996. View Article : Google Scholar : PubMed/NCBI
|
14
|
Vosters JL, Landek-Salgado MA, Yin H,
Swaim WD, Kimura H, Tak PP, Caturegli P and Chiorini JA:
Interleukin-12 induces salivary gland dysfunction in transgenic
mice, providing a new model of Sjögren's syndrome. Arthritis Rheum.
60:3633–3641. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Teng MW, Bowman EP, McElwee JJ, Smyth MJ,
Casanova JL, Cooper AM and Cua DJ: IL-12 and IL-23 cytokines: From
discovery to targeted therapies for immune-mediated inflammatory
diseases. Nat Med. 21:719–729. 2015. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Gabrilovich DI and Nagaraj S:
Myeloid-derived suppressor cells as regulators of the immune
system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Veglia F, Perego M and Gabrilovich D:
Myeloid-derived suppressor cells coming of age. Nat Immunol.
19:108–119. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Parker KH, Beury DW and Ostrand-Rosenberg
S: Myeloid-derived suppressor cells: Critical cells driving immune
suppression in the tumor microenvironment. Adv Cancer Res.
128:95–139. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Talmadge JE and Gabrilovich DI: History of
myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Younos I, Donkor M, Hoke T, Dafferner A,
Samson H, Westphal S and Talmadge J: Tumor- and organ-dependent
infiltration by myeloid-derived suppressor cells. Int
Immunopharmacol. 11:816–826. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vlachou K, Mintzas K, Glymenaki M, Ioannou
M, Papadaki G, Bertsias GK, Sidiropoulos P, Boumpas DT and Verginis
P: Elimination of granulocytic myeloid-derived suppressor cells in
lupus-prone mice linked to reactive oxygen species-dependent
extracellular trap formation. Arthritis Rheumatol. 68:449–461.
2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Qi J, Li D, Shi G, Zhang X, Pan Y, Dou H,
Yao G and Hou Y: Myeloid-derived suppressor cells exacerbate
Sjögren's syndrome by inhibiting Th2 immune responses. Mol Immunol.
101:251–258. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ji J, Xu J, Zhao S, Liu F, Qi J, Song Y,
Ren J, Wang T, Dou H and Hou Y: Myeloid-derived suppressor cells
contribute to systemic lupus erythaematosus by regulating
differentiation of Th17 cells and Tregs. Clin Sci (Lond).
130:1453–1467. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guo C, Hu F, Yi H, Feng Z, Li C, Shi L, Li
Y, Liu H, Yu X, Wang H, et al: Myeloid-derived suppressor cells
have a proinflammatory role in the pathogenesis of autoimmune
arthritis. Ann Rheum Dis. 75:278–285. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kontaki E, Boumpas DT, Tzardi M, Mouzas
IA, Papadakis KA and Verginis P: Aberrant function of
myeloid-derived suppressor cells (MDSCs) in experimental colitis
and in inflammatory bowel disease (IBD) immune responses.
Autoimmunity. 50:170–181. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Heim CE, Vidlak D, Scherr TD, Hartman CW,
Garvin KL and Kielian T: IL-12 promotes myeloid-derived suppressor
cell recruitment and bacterial persistence during Staphylococcus
aureus orthopedic implant infection. J Immunol. 194:3861–3872.
2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kerkar SP, Goldszmid RS, Muranski P,
Chinnasamy D, Yu Z, Reger RN, Leonardi AJ, Morgan RA, Wang E,
Marincola FM, et al: IL-12 triggers a programmatic change in
dysfunctional myeloid-derived cells within mouse tumors. J Clin
Invest. 121:4746–4757. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Steding CE, Wu ST, Zhang Y, Jeng MH, Elzey
BD and Kao C: The role of interleukin-12 on modulating
myeloid-derived suppressor cells, increasing overall survival and
reducing metastasis. Immunology. 133:221–238. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yoon KC, De Paiva CS, Qi H, Chen Z, Farley
WJ, Li DQ, Stern ME and Pflugfelder SC: Desiccating environmental
stress exacerbates autoimmune lacrimal keratoconjunctivitis in
non-obese diabetic mice. J Autoimmun. 30:212–221. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shah M, Edman MC, Janga SR, Shi P,
Dhandhukia J, Liu S, Louie SG, Rodgers K, Mackay JA and
Hamm-Alvarez SF: A rapamycin-binding protein polymer nanoparticle
shows potent therapeutic activity in suppressing autoimmune
dacryoadenitis in a mouse model of Sjögren's syndrome. J Control
Release. 171:269–279. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cha S, Peck AB and Humphreys-Beher MG:
Progress in understanding autoimmune exocrinopathy using the
non-obese diabetic mouse: An update. Crit Rev Oral Biol Med.
13:5–16. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hunger RE, Carnaud C, Vogt I and Mueller
C: Male gonadal environment paradoxically promotes dacryoadenitis
in nonobese diabetic mice. J Clin Invest. 101:1300–1309. 1998.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lin X, Rui K, Deng J, Tian J, Wang X, Wang
S, Ko KH, Jiao Z, Chan VS, Lau CS, et al: Th17 cells play a
critical role in the development of experimental Sjögren's
syndrome. Ann Rheum Dis. 74:1302–1310. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Crook KR and Liu P: Role of
myeloid-derived suppressor cells in autoimmune disease. World J
Immunol. 4:26–33. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Trinchieri G: Interleukin-12 and the
regulation of innate resistance and adaptive immunity. Nat Rev
Immunol. 3:133–146. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hagberg N, Joelsson M, Leonard D, Reid S,
Eloranta ML, Mo J, Nilsson MK, Syvänen AC, Bryceson YT and Rönnblom
L: The STAT4 SLE risk allele rs7574865[T] is associated with
increased IL-12-induced IFN-γ production in T cells from patients
with SLE. Ann Rheum Dis. 77:1070–1077. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Thompson C, Davies R and Choy E: Anti
cytokine therapy in chronic inflammatory arthritis. Cytokine.
86:92–99. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rostami A and Ciric B: Role of Th17 cells
in the pathogenesis of CNS inflammatory demyelination. J Neurol
Sci. 333:76–87. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nocturne G and Mariette X: Advances in
understanding the pathogenesis of primary Sjögren's syndrome. Nat
Rev Rheumatol. 9:544–556. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang H, Wang S, Huang Y, Wang H, Zhao J,
Gaskin F, Yang N and Fu SM: Myeloid-derived suppressor cells are
proinflammatory and regulate collagen-induced arthritis through
manipulating Th17 cell differentiation. Clin Immunol. 157:175–186.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Haile LA, von Wasielewski R,
Gamrekelashvili J, Krüger C, Bachmann O, Westendorf AM, Buer J,
Liblau R, Manns MP, Korangy F and Greten TF: Myeloid-derived
suppressor cells in inflammatory bowel disease: A new
immunoregulatory pathway. Gastroenterology. 135:871–881, 881.e1-e5.
2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
King IL, Dickendesher TL and Segal BM:
Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a
pathogenic role during autoimmune demyelinating disease. Blood.
113:3190–3197. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yi H, Guo C, Yu X, Zuo D and Wang XY:
Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell
differentiation and experimental autoimmune encephalomyelitis. J
Immunol. 189:4295–4304. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Waldner MJ and Neurath MF: Gene therapy
using IL 12 family members in infection, auto immunity, and cancer.
Curr Gene Ther. 9:239–247. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zundler S and Neurath MF: Interleukin-12:
Functional activities and implications for disease. Cytokine Growth
Factor Rev. 26:559–568. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Christodoulou MI, Kapsogeorgou EK,
Moutsopoulos NM and Moutsopoulos HM: Foxp3+ T-regulatory cells in
Sjogren's syndrome: Correlation with the grade of the autoimmune
lesion and certain adverse prognostic factors. Am J Pathol.
173:1389–1396. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gottenberg JE, Lavie F, Abbed K, Gasnault
J, Le Nevot E, Delfraissy JF, Taoufik Y and Mariette X: CD4
CD25high regulatory T cells are not impaired in patients with
primary Sjögren's syndrome. J Autoimmun. 24:235–242. 2005.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ozaki Y, Ito T, Son Y, Amuro H, Shimamoto
K, Sugimoto H, Katashiba Y, Ogata M, Miyamoto R, Murakami N, et al:
Decrease of blood dendritic cells and increase of
tissue-infiltrating dendritic cells are involved in the induction
of Sjögren's syndrome but not in the maintenance. Clin Exp Immunol.
159:315–326. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
van Blokland SC, van Helden-Meeuwsen CG,
Wierenga-Wolf AF, Drexhage HA, Hooijkaas H, van de Merwe JP and
Versnel MA: Two different types of sialoadenitis in the NOD- and
MRL/lpr mouse models for Sjögren's syndrome: A differential role
for dendritic cells in the initiation of sialoadenitis? Lab Invest.
80:575–585. 2000. View Article : Google Scholar : PubMed/NCBI
|