1
|
Heydari M, Shams M, Hashempur MH, Zargaran
A, Dalfardi B and Borhani-Haghighi A: The origin of the concept of
neuropathic pain in early medieval Persia (9th-12th century CE).
Acta Med Hist Adriat. 13:9–21. 2015.PubMed/NCBI
|
2
|
Bert C, Engenhartcabillic R and Durante M:
Particle therapy for noncancer diseases. Med Phys. 39:1716–1727.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maila SK: Clinical outcome following
micro-vascular decompression for trigeminal neuralgia. Int J Res
Med Sci. 3:1741–1744. 2015.
|
4
|
Devor M, Amir R and Rappaport ZH:
Pathophysiology of trigeminal neuralgia: The ignition hypothesis.
Clin J Pain. 18:4–13. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Love S and Coakham HB: Trigeminal
neuralgia. Encyclopedia Neuroscience. 124:1173–1177. 2009.
View Article : Google Scholar
|
6
|
Wartolowska K and Tracey I: Neuroimaging
in Understanding Chronic Pain Mechanisms and the Development of New
Therapies. Imaging in CNS Drug Discovery and Development. Borsook
D, Beccera L, Bullmore E and Hargreaves R: Springer; New York, NY:
pp. 251–261. 2009
|
7
|
Yuan J, Cao S, Huang Y, Zhang Y, Xie P,
Zhang Y, Fu B, Zhang T, Song G, Yu T and Zhang M: Altered
spontaneous brain activity in patients with idiopathic trigeminal
neuralgia: A resting-state functional MRI study. Clin J Pain.
34:600–609. 2018.PubMed/NCBI
|
8
|
Tian L, Jiang T, Liang M, Zang Y, He Y,
Sui M and Wang Y: Enhanced resting-state brain activities in ADHD
patients: A fMRI study. Brain Dev. 30:342–348. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Moisset X, Villain N, Ducreux D, Serrie A,
Cunin G, Valade D, Calvino B and Bouhassira D: Functional brain
imaging of trigeminal neuralgia. Neuralgia Eur J Pain. 15:24–131.
2011.
|
10
|
Pilgrim LK, Fadili J, Fletcher P and Tyler
LK: Overcoming confounds of stimulus blocking: An Event-Related
fMRI design of semantic processing. Neuroimage. 16:713–723. 2002.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Josephs O, Turner R and Friston K:
Event-related fMRI. Hum Brain Mapp. 5:243–248. 1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Biswal BB, Mennes M, Zuo XN, Gohel S,
Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe
S, et al: Toward discovery science of human brain function. Proc
Natl Acad Sci USA. 107:4734–4739. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bullmore E and Sporns O: Complex brain
networks: Graph theoretical analysis of structural and functional
systems. Nat Rev Neurosci. 10:186–198. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu QZ, Li DM, Kuang WH, Zhang TJ, Liu S,
Huang XQ, Chan RCK, Kemp GJ and Gong QY: Abnormal regional
spontaneous neural activity in treatment-refractory depression
revealed by resting-state fMRI. Hum Brain Mapp. 32:1290–1299. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Khalili MN, Chang C, van Osch MJ, Veer IM,
van Buchem MA, Dahan A, Beckmann CF, van Gerven JM and Rombouts SA:
The impact of ‘physiological correction’ on functional connectivity
analysis of pharmacological resting state fMRI. Neuroimage.
65:499–510. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xi Q, Zhao X, Wang P, Guo Q, Jiang H, Cao
X, He Y and Yan C: Spontaneous brain activity in mild cognitive
impairment revealed by amplitude of low-frequency fluctuation
analysis: A resting-state fMRI study. Radiol Med. 117:865–871.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dai XJ, Liu CL, Zhou RL, Gong HH, Wu B,
Gao L and Wang YX: Long-term sleep deprivation decreases the
default spontaneous activity and connectivity pattern in healthy
male subjects: A resting-state fMRI study. Neuropsychiatr Dis
Treat. 11:761–772. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zuo XN, Martino AD, Kelly C, Shehzad ZE,
Gee DG, Klein DF, Castellanos FX, Biswal BB and Milham MP: The
oscillating brain: Complex and reliable. Neuroimage. 49:1432–1445.
2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Logothetis NK, Pauls J, Augath M, Trinath
T and Oeltermann A: Neurophysiological investigation of the basis
of the fMRI signal. Nature. 412:150–157. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kang HH, Shu YQ, Yang L, Zhu PW, Li D, Li
QH□Min YL and Ye L: Measuring abnormal intrinsic brain activities
in patients with retinal detachment using amplitude of
low-frequency fluctuation: a resting-state fMRI study. Int J
Neurosci. 129:681–686. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tan G, Huang X, Ye L, Wu AH, He LX, Zhong
YL, Jiang N, Zhou FQ and Shao Y: Altered spontaneous brain activity
patterns in patients with unilateral acute open globe injury using
amplitude of low-frequency fluctuation: A functional magnetic
resonance imaging study. Neuropsychiatr Dis Treat. 12:2015–2020.
2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xiang CQ, Liu WF, Xu QH, Su T, Yong-Qiang
S, Min YL, Yuan Q, Zhu PW, Liu KC, Jiang N, et al: Altered
spontaneous brain activity in patients with classical trigeminal
neuralgia using regional homogeneity: A resting-state functional
MRI study. Pain Pract. 19:397–406. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li HJ, Dai XJ, Gong HH, Nie X, Zhang W and
Peng DC: Aberrant spontaneous low-frequency brain activity in male
patients with severe obstructive sleep apnea revealed by
resting-state functional MRI. Neuropsychiatr Dis Treat. 11:207–214.
2015.PubMed/NCBI
|
24
|
Xue T, Yuan K, Cheng P, Zhao L, Zhao L, Yu
D, Dong T, von Deneen KM, Gong Q, Qin W and Tian J: Alterations of
regional spontaneous neuronal activity and corresponding brain
circuit changes during resting state in migraine without aura. NMR
Biomed. 26:1051–1058. 2013. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Y, Xu C, Zhai L, Lu X, Wu X, Yi Y,
Liu Z, Guan Q and Zhang X: Spatial-temporal signature of
resting-state BOLD signals in classic trigeminal neuralgia. J Pain
Res. 10:2741–2750. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pan ZM, Li HJ, Bao J, Jiang N, Yuan Q,
Freeberg S, Zhu PW, Ye L, Ma MM, Huang X and Shao Y: Altered
intrinsic brain activities in patients with acute eye pain using
amplitude of low-frequency fluctuation: A resting-state fMRI study.
Neuropsychiatr Dis Treat. 14:251–257. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang SS, Wu W, Yang JM and Wang CH:
Abnormal spontaneous brain activity in acute Low-back pain revealed
by Resting-state functional MRI. Am J Phys Med Rehabil. 96:253–259.
2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma X, Li S, Tian J, Jiang G, Wen H, Wang
T, Fang J, Zhan W and Xu Y: Altered brain spontaneous activity and
connectivity network in irritable bowel syndrome patients: A
resting-state fMRI study. Clin Neurophysiol. 126:1190–1119. 2015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu P, Liu Y, Wang G, Yang X, Jin L, Sun J
and Qin W: Aberrant default mode network in patients with primary
dysmenorrhea: A fMRI study. Brain Imaging Behav. 11:1479–1485.
2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Parise M, Kubo TT, Doring TM, Tukamoto G,
Vincent M and Gasparetto EL: Cuneus and fusiform cortices thickness
is reduced in trigeminal neuralgia. J Headache Pain. 15:172014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Starrfelt R and Gerlach C: The visual what
for area: Words and pictures in the left fusiform gyrus.
Neuroimage. 35:334–342. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee CU, Shenton ME, Salisbury DF, Kasai K,
Onitsuka T, Dickey CC, Yurgelun-Todd D, Kikinis R, Jolesz FA and
McCarley RW: Fusiform gyrus volume reduction in first-episode
schizophrenia: A magnetic resonance imaging study. Arch Gen
Psychiatry. 59:775–781. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mion M, Patterson K, Acosta-Cabronero J,
Pengas G, Izquierdo-Garcia D, Hong YT, Fryer TD, Williams GB,
Hodges JR and Nestor PJ: What the left and right anterior fusiform
gyri tell us about semantic memory. Brain. 133:3256–3268. 2010.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Schwedt TJ, Chong CD, Chiang CC, Baxter L,
Schlaggar BL and Dodick DW: Enhanced pain-induced activity of pain
processing regions in a case-control study of episodic migraine.
Cephalalgia. 34:947–958. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ter Minassian A, Ricalens E, Humbert S,
Duc F, Aubé C and Beydon L: Dissociating anticipation from
perception: Acute pain activates default mode network. Hum Brain
Mapp. 34:2228–2243. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Damasio AR and Damasio H: Cortical systems
for the retrieval of concrete knowledge: The convergence zone
framework. Large Scale Neuronal Theories of the Brain Cambridge MA:
MIT Press; pp. 61–74. 2011
|
37
|
Reis GM, Dias QM, Silveira JW, Del Vecchio
F, Garcia-Cairasco N and Prado WA: Antinociceptive effect of
stimulating the occipital or retrosplenial cortex in rats. J Pain.
11:1015–1026. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cutrer FM, Sorensen AG, Weisskoff RM,
Ostergaard L, Sanchez del Rio M, Lee EJ, Rosen BR and Moskowitz MA:
Perfusion-weighted imaging defects during spontaneous migrainous
aura. Ann Neurol. 43:25–31. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cauda F, Sacco K, Duca S, Cocito D,
D'Agata F, Geminiani GC and Canavero S: Altered resting state in
diabetic neuropathic pain. PLoS One. 4:e45422009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang Y, Zhang X, Guan Q, Wan L, Yi Y and
Liu C: Altered regional homogeneity of spontaneous brain activity
in idiopathic trigeminal neuralgia. Neuropsychiatr Dis Treat.
11:2659–2666. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Obermann M, Rodriguez-Raecke R, Naegel S,
Holle D, Mueller D, Yoon MK, Theysohn N, Blex S, Diener HC and
Katsarava Z: Gray matter volume reduction reflects chronic pain in
trigeminal neuralgia. Neuroimage. 74:352–358. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Manto M, Bower JM, Conforto AB,
Delgado-García JM, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P,
Molinari M, et al: Consensus paper: Roles of the cerebellum in
motor control-the diversity of ideas on cerebellar involvement in
movement. Cerebellum. 11:457–487. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Calderon DP, Fremont R and Kraenzlin F:
The neural substrates of rapid-onset dystonia-parkinsonism. Nature.
14:357–365. 2011.
|
44
|
Gao JH, Parsons LM, Bower JM, Xiong J, Li
J and Fox PT: Cerebellum implicated in sensory acquisition and
discrimination rather than motor control. Science. 272:545–547.
1996. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yousry TA, Schmid UD, Alkadhi H, Schmidt
D, Peraud A, Buettner A and Winkler P: Localization of the motor
hand area to a knob on the precentral gyrus. A new landmark. Brain.
120:141–145. 1997. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bigbee J: Precentral Gyrus. Springer; New
York: 2011, View Article : Google Scholar
|
47
|
Ellingson LD, Shields MR, Stegner AJ and
Cook DB: Physical activity, sustained sedentary behavior, and pain
modulation in women with fibromyalgia. J Pain. 13:195–206. 2012.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Anticevic A, Hu S, Zhang S, Savic A,
Billingslea E, Wasylink S, Repovs G, Cole MW, Bednarski S, Krystal
JH, et al: Global resting-state functional magnetic resonance
imaging analysis identifies frontal cortex, striatal, and
cerebellar dysconnectivity inobsessive-compulsive disorder. Biol
Psychiatry. 75:595–605. 2014. View Article : Google Scholar : PubMed/NCBI
|