1
|
Tanaka H, Yoshida T, Miyamoto N, Motoike
T, Kurosu H, Shibata K, Yamanaka A, Williams SC, Richardson JA,
Tsujino N, et al: Characterization of a family of endogenous
neuropeptide ligands for the G protein-coupled receptors GPR7 and
GPR8. Proc Natl Acad Sci USA. 100:6251–6256. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fujii R, Yoshida H, Fukusumi S, Habata Y,
Hosoya M, Kawamata Y, Yano T, Hinuma S, Kitada C, Asami T, et al:
Identification of a neuropeptide modified with bromine as an
endogenous ligand for GPR7. J Biol Chem. 277:34010–34016. 2002.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lee DK, Nguyen T, Porter CA, Cheng R,
George SR and O'Dowd BF: Two related G protein-coupled receptors:
The distribution of GPR7 in rat brain and the absence of GPR8 in
rodents. Brain Res Mol Brain Res. 71:96–103. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chottova Dvorakova M: Distribution and
function of neuropeptides W/B signaling system. Front Physiol.
9:9812018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yamamoto T, Saito O, Shono K and Tanabe S:
Anti-hyperalgesic effects of intrathecally administered
neuropeptide W-23, and neuropeptide B, in tests of inflammatory
pain in rats. Brain Res. 1045:97–106. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Aikawa S, Ishii M, Yanagisawa M,
Sakakibara Y and Sakurai T: Effect of neuropeptide B on feeding
behavior is influenced by endogenous corticotropin-releasing factor
activities. Regul Pept. 151:147–152. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Uchio N, Doi M, Matsuo M, Yamazaki F,
Mizoro Y, Hondo M, Sakurai T and Okamura H: Circadian
characteristics of mice depleted with GPR7. Biomed Res. 30:357–364.
2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hochol A, Belloni AS, Rucinski M,
Ziolkowska A, Di Liddo R, Nussdorfer GG and Malendowicz LK:
Expression of neuropeptides B and W and their receptors in
endocrine glands of the rat. Int J Mol Med. 18:1101–1106.
2006.PubMed/NCBI
|
9
|
Ishii M, Fei H and Friedman JM: Targeted
disruption of GPR7, the endogenous receptor for neuropeptides B and
W, leads to metabolic defects and adult-onset obesity. Proc Natl
Acad Sci USA. 100:10540–10545. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kelly MA, Beuckmann CT, Williams SC,
Sinton CM, Motoike T, Richardson JA, Hammer RE, Garry MG and
Yanagisawa M: Neuropeptide B-deficient mice demonstrate
hyperalgesia in response to inflammatory pain. Proc Natl Acad Sci
USA. 102:9942–9947. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Skrzypski M, Pruszynska-Oszmalek E,
Rucinski M, Szczepankiewicz D, Sassek M, Wojciechowicz T, Kaczmarek
P, Kołodziejski PA, Strowski MZ, Malendowicz LK and Nowak KW:
Neuropeptide B and W regulate leptin and resistin secretion, and
stimulate lipolysis in isolated rat adipocytes. Regul Pept.
176:51–56. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Grzelak T, Tyszkiewicz-Nwafor M,
Dutkiewicz A, Mikulska AA, Dmitrzak-Weglarz M, Slopien A, Czyzewska
K and Paszynska E: Neuropeptide B and vaspin as new biomarkers in
anorexia nervosa. Biomed Res Int. 2018:97275092018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Grzelak T, Wedrychowicz A, Grupinska J,
Grupinska J, Pelczynska M, Sperling M, Mikulska AA, Naughton V and
Czyzewska K: Neuropeptide B and neuropeptide W as new serum
predictors of nutritional status and of clinical outcomes in
pediatric patients with type 1 diabetes mellitus treated with the
use of pens or insulin pumps. Arch Med Scie. 15:619–631. 2019.
View Article : Google Scholar
|
14
|
Fu Z, Gilbert ER and Liu D: Regulation of
insulin synthesis and secretion and pancreatic Beta-cell
dysfunction in diabetes. Curr Diabetes Rev. 9:25–53. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Klöppel G, Löhr M, Habich K, Oberholzer M
and Heitz PU: Islet pathology and the pathogenesis of type 1 and
type 2 diabetes mellitus revisited. Surv Synth Pathol Res.
4:110–125. 1985.PubMed/NCBI
|
16
|
Porte D Jr and Kahn SE: Beta-cell
dysfunction and failure in type 2 diabetes: Potential mechanisms.
Diabetes. 50 (Suppl 1):S160–S163. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sakurai T: NPBWR1 and NPBWR2: Implications
in energy homeostasis, pain, and emotion. Front Endocrinol
(Lausanne). 4:232013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Merglen A, Theander S, Rubi B, Chaffard G,
Wollheim CB and Maechler P: Glucose sensitivity and
metabolism-secretion coupling studied during two-year continuous
culture in INS-1E insulinoma cells. Endocrinology. 145:667–678.
2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Billert M, Skrzypski M, Sassek M,
Szczepankiewicz D, Wojciechowicz T, Mergler S, Strowski MZ and
Nowak KW: TRPV4 regulates insulin mRNA expression and INS-1E cell
death via ERK1/2 and NO-dependent mechanisms. Cell Signal.
35:242–249. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mazzocchi G, Rebuffat P, Ziolkowska A,
Rossi GP, Malendowicz LK and Nussdorfer GG: G protein receptors 7
and 8 are expressed in human adrenocortical cells, and their
endogenous ligands neuropeptides B and w enhance cortisol secretion
by activating adenylate cyclase- and phospholipase C-dependent
signaling cascades. J Clin Endocrinol Metab. 90:3466–3471. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Khoo S, Gibson TB, Arnette D, Lawrence M,
January B, McGlynn K, Vanderbilt CA, Griffen SC, German MS and Cobb
MH: MAP kinases and their roles in pancreatic beta-cells. Cell
Biochem Biophys 40 (3 Suppl). S191–S200. 2004. View Article : Google Scholar
|
22
|
Favata MF, Horiuchi KY, Manos EJ, Daulerio
AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F,
et al: Identification of a novel inhibitor of mitogen-activated
protein kinase kinase. J Biol Chem. 273:18623–18632. 1998.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Dezaki K, Kageyama H, Seki M, Shioda S and
Yada T: Neuropeptide W in the rat pancreas: Potentiation of
glucose-induced insulin release and Ca2+ influx through
L-type Ca2+ channels in beta-cells and localization in
islets. Regul Pept. 145:153–158. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Andrali SS, Sampley ML, Vanderford NL and
Ozcan S: Glucose regulation of insulin gene expression in
pancreatic beta-cells. Biochem J. 415:1–10. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Seufert J, Kieffer TJ and Habener JF:
Leptin inhibits insulin gene transcription and reverses
hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci
USA. 96:674–679. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Colombo M, Gregersen S, Xiao J and
Hermansen K: Effects of ghrelin and other neuropeptides (CART, MCH,
orexin A and B, and GLP-1) on the release of insulin from isolated
rat islets. Pancreas. 27:161–166. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Skrzypski M, Khajavi N, Mergler S, Billert
M, Szczepankiewicz D, Wojciechowicz T, Nowak KW and Strowski MZ:
Orexin A modulates INS-1E cell proliferation and insulin secretion
via extracellular signal-regulated kinase and transient receptor
potential channels. J Physiol Pharmacol. 67:643–652.
2016.PubMed/NCBI
|
28
|
Böhm SK, Grady EF and Bunnett NW:
Regulatory mechanisms that modulate signalling by G-protein-coupled
receptors. Biochem J. 322:1–18. 1997. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yoon JC, Xu G, Deeney JT, Yang SN, Rhee J,
Puigserver P, Levens AR, Yang R, Zhang CY, Lowell BB, et al:
Suppression of beta cell energy metabolism and insulin release by
PGC-1alpha. Dev Cell. 5:73–83. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang H, Maechler P, Antinozzi PA,
Hagenfeldt KA and Wollheim CB: Hepatocyte nuclear factor 4alpha
regulates the expression of pancreatic beta-cell genes implicated
in glucose metabolism and nutrient-induced insulin secretion. J
Biol Chem. 275:35953–35959. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kataoka K, Han SI, Shioda S, Hirai M,
Nishizawa M and Handa H: MafA is a glucose-regulated and pancreatic
beta-cell-specific transcriptional activator for the insulin gene.
J Biol Chem. 277:49903–49910. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
De Vos A, Heimberg H, Quartier E, Huypens
P, Bouwens L, Pipeleers D and Schuit F: Human and rat beta cells
differ in glucose transporter but not in glucokinase gene
expression. J Clin Invest. 96:2489–2495. 1995. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lawrence MC, McGlynn K, Park BH and Cobb
MH: ERK1/2-dependent activation of transcription factors required
for acute and chronic effects of glucose on the insulin gene
promoter. J Biol Chem. 280:26751–26759. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Andreis PG, Rucinski M, Neri G, Conconi
MT, Petrelli L, Parnigotto PP, Malendowicz LK and Nussdorfer GG:
Neuropeptides B and W enhance the growth of human adrenocortical
carcinoma-derived NCI-H295 cells by exerting MAPK p42/p44-mediated
proliferogenic and antiapoptotic effects. Int J Mol Med.
16:1021–1028. 2005.PubMed/NCBI
|
35
|
Deltour L, Leduque P, Blume N, Madsen O,
Dubois P, Jami J and Bucchini D: Differential expression of the two
nonallelic proinsulin genes in the developing mouse embryo. Proc
Natl Acad Sci USA. 90:527–531. 1993. View Article : Google Scholar : PubMed/NCBI
|
36
|
Roderigo-Milne H, Hauge-Evans AC, Persaud
SJ and Jones PM: Differential expression of insulin genes 1 and 2
in MIN6 cells and pseudoislets. Biochem Biophys Res Commun.
296:589–595. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gu C, Stein GH, Pan N, Goebbels S,
Hörnberg H, Nave KA, Herrera P, White P, Kaestner KH, Sussel L and
Lee JE: Pancreatic beta cells require NeuroD to achieve and
maintain functional maturity. Cell Metab. 11:298–310. 2010.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Nishimura W, Takahashi S and Yasuda K:
MafA is critical for maintenance of the mature beta cell phenotype
in mice. Diabetologia. 58:566–574. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Brezillon S, Lannoy V, Franssen JD, Le
Poul E, Dupriez V, Lucchetti J, Detheux M and Parmentier M:
Identification of natural ligands for the orphan G protein-coupled
receptors GPR7 and GPR8. J Biol Chem. 278:776–783. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen
S and Eizirik DL: Mechanisms of pancreatic beta-cell death in type
1 and type 2 diabetes: Many differences, few similarities.
Diabetes. 54 (Suppl 2):S97–S107. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen C, Cohrs CM, Stertmann J, Bozsak R
and Speier S: Human beta cell mass and function in diabetes: Recent
advances in knowledge and technologies to understand disease
pathogenesis. Mol Metab. 6:943–957. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ziolkowska A, Rucinski M, Tyczewska M and
Malendowicz LK: Neuropeptide B (NPB) and neuropeptide W (NPW)
system in cultured rat calvarial osteoblast-like (ROB) cells: NPW
and NPB inhibit proliferative activity of ROB cells. Int J Mol Med.
24:781–787. 2009.PubMed/NCBI
|
43
|
Hochol A, Albertin G, Nussdorfer GG,
Spinazzi R, Ziolkowska A, Rucinski M and Malendowicz LK: Effects of
neuropeptides B and W on the secretion and growth of rat
adrenocortical cells. Int J Mol Med. 14:843–847. 2004.PubMed/NCBI
|
44
|
Steiner DJ, Kim A, Miller K and Hara M:
Pancreatic islet plasticity: Interspecies comparison of islet
architecture and composition. Islets. 2:135–145. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Redmon JB, Towle HC and Robertson RP:
Regulation of human insulin gene transcription by glucose,
epinephrine, and somatostatin. Diabetes. 43:546–551. 1994.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Hiriart M and Aguilar-Bryan L: Channel
regulation of glucose sensing in the pancreatic beta-cell. Am J
Physiol Endocrinol Metab. 295:E1298–E1306. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Skrzypski M, Billert M, Mergler S, Khajavi
N, Nowak KW and Strowski MZ: Role of TRPV channels in regulating
various pancreatic β-cell functions: Lessons from in vitro studies.
Biosci Trends. 11:9–15. 2017. View Article : Google Scholar : PubMed/NCBI
|