1
|
Choi PS, Zakhary L, Choi WY, Caron S,
Alvarez-Saavedra E, Miska EA, McManus M, Harfe B, Giraldez AJ,
Horvitz RH, et al: Members of the miRNA-200 family regulate
olfactory neurogenesis. Neuron. 57:41–55. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Makeyev EV, Zhang J, Carrasco MA and
Maniatis T: The MicroRNA miR-124 promotes neuronal differentiation
by triggering brain-specific alternative pre-mRNA splicing. Mol
Cell. 27:435–448. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim J, Inoue K, Ishii J, Vanti WB, Voronov
SV, Murchison E, Hannon G and Abeliovich A: A MicroRNA feedback
circuit in midbrain dopamine neurons. Science. 317:1220–1224. 2007.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Haramati S, Chapnik E, Sztainberg Y, Eilam
R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I,
et al: miRNA malfunction causes spinal motor neuron disease. Proc
Natl Acad Sci USA. 107:13111–13116. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Harraz MM, Dawson TM and Dawson VL:
MicroRNAs in Parkinson's disease. J Chem Neuroanat. 42:127–130.
2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Morgado AL, Rodrigues CM and Sola S:
MicroRNA-145 regulates neural stem cell differentiation through the
Sox2-Lin28/let-7 signaling pathway. Stem Cells. 34:1386–1395. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Cheng LC, Pastrana E, Tavazoie M and
Doetsch F: miR-124 regulates adult neurogenesis in the
subventricular zone stem cell niche. Nat Neurosci. 12:399–408.
2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Shibata M, Nakao H, Kiyonari H, Abe T and
Aizawa S: MicroRNA-9 regulates neurogenesis in mouse telencephalon
by targeting multiple transcription factors. J Neurosci.
31:3407–3422. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Doxakis E: Post-transcriptional regulation
of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem.
285:12726–12734. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wei C, Thatcher EJ, Olena AF, Cha DJ,
Perdigoto AL, Marshall AF, Carter BD, Broadie K and Patton JG:
miR-153 regulates SNAP-25, synaptic transmission, and neuronal
development. PLoS One. 8:e570802013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tsuyama J, Bunt J, Richards LJ, Iwanari H,
Mochizuki Y, Hamakubo T, Shimazaki T and Okano H: MicroRNA-153
regulates the acquisition of gliogenic competence by neural stem
cells. Stem Cell Reports. 5:365–377. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zylbersztejn K and Galli T: Vesicular
traffic in cell navigation. FEBS J. 278:4497–4505. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim B, Park J, Chang KT and Lee DS:
Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal
cell death by inhibiting ERK-Drp1-mediated mitochondrial
fragmentation. Free Radic Biol Med. 90:184–194. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
O'Brien RJ and Wong PC: Amyloid precursor
protein processing and Alzheimer's disease. Annu Rev Neurosci.
34:185–204. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Qiu L, Tan EK and Zeng L: microRNAs and
neurodegenerative diseases. Adv Exp Med Biol. 888:85–105. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Leggio L, Vivarelli S, L'Episcopo F,
Tirolo C, Caniglia S, Testa N, Marchetti B and Iraci N: microRNAs
in Parkinson's disease: From pathogenesis to novel diagnostic and
therapeutic approaches. Int J Mol Sci. 18:E26982017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sempere LF, Freemantle S, Pitha-Rowe I,
Moss E, Dmitrovsky E and Ambros V: Expression profiling of
mammalian microRNAs uncovers a subset of brain-expressed microRNAs
with possible roles in murine and human neuronal differentiation.
Genome Biol. 5:R132004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bak M, Silahtaroglu A, Moller M,
Christensen M, Rath MF, Skryabin B, Tommerup N and Kauppinen S:
MicroRNA expression in the adult mouse central nervous system. RNA.
14:432–444. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Landgraf P, Rusu M, Sheridan R, Sewer A,
Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M,
et al: A mammalian microRNA expression atlas based on small RNA
library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu J, Li L and Suo WZ: HT22 hippocampal
neuronal cell line possesses functional cholinergic properties.
Life Sci. 84:267–271. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lei T, Zhang P, Zhang X, Xiao X, Zhang J,
Qiu T, Dai Q, Zhang Y, Min L, Li Q, et al: Cyclin K regulates
prereplicative complex assembly to promote mammalian cell
proliferation. Nat Commun. 9:18762018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Juan HC, Lin Y, Chen HR and Fann MJ: Cdk12
is essential for embryonic development and the maintenance of
genomic stability. Cell Death Differ. 23:1038–1048. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen HR, Juan HC, Wong YH, Tsai JW and
Fann MJ: Cdk12 regulates neurogenesis and late-arising neuronal
migration in the developing cerebral cortex. Cereb Cortex.
27:2289–2302. 2017.PubMed/NCBI
|
25
|
Isgro MA, Bottoni P and Scatena R:
Neuron-specific enolase as a biomarker: Biochemical and clinical
aspects. Adv Exp Med Biol. 867:125–143. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Corradini I, Verderio C, Sala M, Wilson MC
and Matteoli M: SNAP-25 in neuropsychiatric disorders. Ann N Y Acad
Sci. 1152:93–99. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Scarr E, Gray L, Keriakous D, Robinson PJ
and Dean B: Increased levels of SNAP-25 and synaptophysin in the
dorsolateral prefrontal cortex in bipolar I disorder. Bipolar
Disord. 8:133–143. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Smith R, Klein P, Koc-Schmitz Y, Waldvogel
HJ, Faull RL, Brundin P, Plomann M and Li JY: Loss of SNAP-25 and
rabphilin 3a in sensory-motor cortex in Huntington's disease. J
Neurochem. 103:115–123. 2007.PubMed/NCBI
|
29
|
Bereczki E, Francis PT, Howlett D, Pereira
JB, Hoglund K, Bogstedt A, Cedazo-Minguez A, Baek JH, Hortobagyi T,
Attems J, et al: Synaptic proteins predict cognitive decline in
Alzheimer's disease and Lewy body dementia. Alzheimers Dement.
12:1149–1158. 2016. View Article : Google Scholar : PubMed/NCBI
|