1
|
Kandula M, Ch KK and Ys AR: Molecular
mechanism and targeted therapy options of triple-negative (ER, PgR,
HER-2/neu) breast cancer: Review. World J Oncol. 4:137–141.
2013.PubMed/NCBI
|
2
|
Jamdade VS, Sethi N, Mundhe NA, Kumar P,
Lahkar M and Sinha N: Therapeutic targets of triple-negative breast
cancer: A review. Br J Pharmacol. 172:4228–4237. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zeichner SB, Terawaki H and Gogineni K: A
Review of systemic treatment in metastatic triple-negative breast
cancer. Breast Cancer (Auckl). 10:25–36. 2016.PubMed/NCBI
|
4
|
Grubb W, Young R, Efird J, Jindal C and
Biswas T: Local therapy for triple-negative breast cancer: A
comprehensive review. Future Oncol. 13:1721–1730. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu Z, Gao Y and Li X: Cancer epigenetics
and the potential of epigenetic drugs for treating solid tumors.
Exp Rev Anticancer Ther. 2018.(Epud ahead of print).
|
6
|
Perri F, Longo F, Giuliano M, Sabbatino F,
Favia G, Ionna F, Addeo R, Della Vittoria Scarpati G, Di Lorenzo G
and Pisconti S: Epigenetic control of gene expression: Potential
implications for cancer treatment. Crit Rev Oncol Hematol.
111:166–172. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Haberland M, Montgomery RL and Olson EN:
The many roles of histone deacetylases in development and
physiology: Implications for disease and therapy. Nat Rev Genet.
10:32–42. 2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Mei S, Ho AD and Mahlknecht U: Role of
histone deacetylase inhibitors in the treatment of cancer (Review).
Int J Oncol. 25:1509–1519. 2004.PubMed/NCBI
|
9
|
Bruserud O, Stapnes C, Ersvaer E, Gjertsen
BT and Ryningen A: Histone deacetylase inhibitors in cancer
treatment: A review of the clinical toxicity and the modulation of
gene expression in cancer cell. Curr Pharm Biotechnol. 8:388–400.
2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hrabeta J, Stiborova M, Adam V, Kizek R
and Eckschlager T: Histone deacetylase inhibitors in cancer
therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech
Repub. 158:161–169. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Valente S and Mai A: Small-molecule
inhibitors of histone deacetylase for the treatment of cancer and
non-cancer diseases: A patent review (2011–2013). Expert Opin Ther
Pat. 24:401–415. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ali SR, Humphreys KJ, McKinnon RA and
Michael MZ: Impact of histone deacetylase inhibitors on microRNA
expression and cancer therapy: A review. Drug Dev Res. 76:296–317.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hiriyan J, Shivarudraiah P, Gavara G,
Annamalai P, Natesan S, Sambasivam G and Sukumaran SK: Discovery of
PAT-1102, a novel, potent and orally active histone deacetylase
inhibitor with antitumor activity in cancer mouse models.
Anticancer Res. 35:229–237. 2015.PubMed/NCBI
|
14
|
Min A, Im SA, Kim DK, Song SH, Kim HJ, Lee
KH, Kim TY, Han SW, Oh DY, Kim TY, et al: Histone deacetylase
inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances
anti-tumor effects of the poly (ADP-ribose) polymerase (PARP)
inhibitor olaparib in triple-negative breast cancer cells. Breast
Cancer Res. 17:332015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Schech A, Kazi A, Yu S, Shah P and Sabnis
G: Histone deacetylase inhibitor entinostat inhibits
tumor-initiating cells in Triple-negative breast cancer Cells. Mol
Cancer Ther. 14:1848–1857. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang L, Liang Q, Shen K, Ma L, An N, Deng
W, Fei Z and Liu J: A novel class I histone deacetylase inhibitor,
I-7ab, induces apoptosis and arrests cell cycle progression in
human colorectal cancer cells. Biomed Pharmacother. 71:70–78. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhong L, Zhou S, Tong R, Shi J, Bai L, Zhu
Y, Duan X, Liu W, Bao J, Su L and Peng Q: Preclinical assessment of
histone deacetylase inhibitor quisinostat as a therapeutic agent
against esophageal squamous cell carcinoma. Invest New Drugs. Aug
31–2018.(Epub ahead of print). doi: 10.1007/s10637-018-0651-4.
View Article : Google Scholar
|
18
|
Connolly RM, Rudek MA and Piekarz R:
Entinostat: A promising treatment option for patients with advanced
breast cancer. Future Oncol. 13:1137–1148. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu L, Chen B, Qin S, Li S, He X, Qiu S,
Zhao W and Zhao H: A novel histone deacetylase inhibitor Chidamide
induces apoptosis of human colon cancer cells. Biochem Biophys Res
Commun. 392:190–195. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Qiao Z, Ren S, Li W, Wang X, He M, Guo Y,
Sun L, He Y, Ge Y and Yu Q: Chidamide, a novel histone deacetylase
inhibitor, synergistically enhances gemcitabine cytotoxicity in
pancreatic cancer cells. Biochem Biophys Res Commun. 434:95–101.
2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou Y, Pan DS, Shan S, Zhu JZ, Zhang K,
Yue XP, Nie LP, Wan J, Lu XP, Zhang W and Ning ZQ: Non-toxic dose
chidamide synergistically enhances platinum-induced DNA damage
responses and apoptosis in non-small-cell lung cancer cells. Biomed
Pharmacother. 68:483–491. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhao B and He T: Chidamide, a histone
deacetylase inhibitor, functions as a tumor inhibitor by modulating
the ratio of Bax/Bcl-2 and P21 in pancreatic cancer. Oncol Rep.
33:304–310. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou J, Zhang C, Sui X, Cao S, Tang F, Sun
S, Wang S and Chen B: Histone deacetylase inhibitor chidamide
induces growth inhibition and apoptosis in NK/T lymphoma cells
through ATM-Chk2-p53-p21 signalling pathway. Invest New Drugs.
36:571–580. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Fabian MR, Sonenberg N and Filipowicz W:
Regulation of mRNA translation and stability by microRNAs. Annu Rev
Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mohr AM and Mott JL: Overview of microRNA
biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu Y, Usa K, Wang F, Liu P, Geurts AM, Li
J, Williams AM, Regner KR, Kong Y, Liu H, et al: MicroRNA-214-3p in
the kidney contributes to the development of hypertension. J Am Soc
Nephrol. 29:2518–2528. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Baker MA, Wang F, Liu Y, Kriegel AJ,
Geurts AM, Usa K, Xue H, Wang D, Kong Y and Liang M: miR-192-5p in
the kidney protects against the development of hypertension.
Hypertension. 73:399–406. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kwak PB, Iwasaki S and Tomari Y: The
microRNA pathway and cancer. Cancer Sci. 101:2309–2315. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Farazi TA, Spitzer JI, Morozov P and
Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zheng J: Energy metabolism of cancer:
Glycolysis versus oxidative phosphorylation (Review). Oncol Lett.
4:1151–1157. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Akram M: Mini-review on glycolysis and
cancer. J Cancer Educ. 28:454–457. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li XB, Gu JD and Zhou QH: Review of
aerobic glycolysis and its key enzymes-new targets for lung cancer
therapy. Thorac Cancer. 6:17–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hua S, Liu C, Liu L and Wu D: miR-142-3p
inhibits aerobic glycolysis and cell proliferation in
hepatocellular carcinoma via targeting LDHA. Biochem Biophys Res
Commun. 496:947–954. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li L, Kang L, Zhao W, Feng Y, Liu W, Wang
T, Mai H, Huang J, Chen S, Liang Y, et al: miR-30a-5p suppresses
breast tumor growth and metastasis through inhibition of
LDHA-mediated Warburg effect. Cancer Lett. 400:89–98. 2017.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang J, Wang D, Xiong J, Chen L and Huang
J: MicroRNA-33a-5p suppresses growth of osteosarcoma cells and is
downregulated in human osteosarcoma. Oncol Lett. 10:2135–2141.
2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cao K, Li J, Chen J, Qian L, Wang A, Chen
X, Xiong W, Tang J, Tang S, Chen Y, et al: microRNA-33a-5p
increases radiosensitivity by inhibiting glycolysis in melanoma.
Oncotarget. 8:83660–83672. 2017.PubMed/NCBI
|
38
|
Tsilimigras DI, Ntanasis-Stathopoulos I,
Moris D, Spartalis E and Pawlik TM: Histone deacetylase inhibitors
in hepatocellular carcinoma: A therapeutic perspective. Surg Oncol.
27:611–618. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lu X, Ning Z, Li Z, Cao H and Wang X:
Development of chidamide for peripheral T-cell lymphoma, the first
orphan drug approved in China. Intractable Rare Dis Res. 5:185–191.
2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Shi Y, Jia B, Xu W, Li W, Liu T, Liu P,
Zhao W, Zhang H, Sun X, Yang H, et al: Chidamide in relapsed or
refractory peripheral T cell lymphoma: A multicenter real-world
study in China. J Hematol Oncol. 10:692017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang S, Guo W, Wan X, Teng Y, Zhou X and
Bai O: Exploring the effect of chidamide on blastic plasmacytoid
dendritic cell neoplasm: A case report and literature review. Ther
Clin Risk Manag. 14:47–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gentilin E, Degli Uberti E and Zatelli MC:
Strategies to use microRNAs as therapeutic targets. Best Prac Res
Clin Endocrinol Metab. 30:629–639. 2016. View Article : Google Scholar
|
43
|
Hosseinahli N, Aghapour M, Duijf PHG and
Baradaran B: Treating cancer with microRNA replacement therapy: A
literature review. J Cell Physiol. 233:5574–5588. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pan J, Zhou C, Zhao X, He J, Tian H, Shen
W, Han Y, Chen J, Fang S, Meng X, et al: A two-miRNA signature
(miR-33a-5p and miR-128-3p) in whole blood as potential biomarker
for early diagnosis of lung cancer. Sci Rep. 8:166992018.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Huang X, Li X and Xie X, Ye F, Chen B,
Song C, Tang H and Xie X: High expressions of LDHA and AMPK as
prognostic biomarkers for breast cancer. Breast. 30:39–46. 2016.
View Article : Google Scholar : PubMed/NCBI
|