1
|
Klahr S, Schreiner G and Ichikawa I: The
progression of renal disease. N Engl J Med. 318:1657–1666. 1988.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Carpenter AR and McHugh KM: Role of renal
urothelium in the development and progression of kidney disease.
Pediatr Nephrol. 32:557–564. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Webster AC, Nagler EV, Morton RL and
Masson P: Chronic kidney disease. Lancet. 389:1238–1252. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Tonelli M, Wiebe N, Culleton B, House A,
Rabbat C, Fok M, McAlister F and Garg AX: Chronic kidney disease
and mortality risk: A systematic review. J Am Soc Nephrol.
17:2034–2047. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
De Nicola L and Zoccali C: Chronic kidney
disease prevalence in the general population: Heterogeneity and
concerns. Nephrol Dial Transpl. 31:331–335. 2016. View Article : Google Scholar
|
6
|
Meguid El Nahas A and Bello AK: Chronic
kidney disease: The global challenge. Lancet. 365:331–340. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Nugent RA, Fathima SF, Feigl AB and Chyung
D: The burden of chronic kidney disease on developing nations: A
21st century challenge in global health. Nephron Clin Pract.
118:c269–c277. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lovisa S, Zeisberg M and Kalluri R:
Partial epithelial-to-mesenchymal transition and other new
mechanisms of kidney fibrosis. Trends Endocrin Met. 27:681–695.
2016. View Article : Google Scholar
|
9
|
Hewitson TD, Holt SG and Smith ER:
Progression of tubulointerstitial fibrosis and the chronic kidney
disease phenotype-role of risk factors and epigenetics. Front
Pharmacol. 8:5202017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lajdova I, Okša A, Spustová A and Dzúrik
R: Cellular calcium balance in chronic kidney disease. Vnitr Lek.
58:525–530. 2012.PubMed/NCBI
|
11
|
Rossi GP, Seccia TM, Barton M, Danser AHJ,
de Leeuw PW, Dhaun N, Rizzoni D, Rossignol P, Ruilope LM, van den
Meiracker AH, et al: Endothelial factors in the pathogenesis and
treatment of chronic kidney disease Part II: Role in disease
conditions: A joint consensus statement from the european society
of hypertension working group on endothelin and endothelial factors
and the japanese society of hypertension. J Hypertens. 36:462–471.
2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wan Q, Tang J, Han Y and Wang D:
Co-expression modules construction by WGCNA and identify potential
prognostic markers of uveal melanoma. Exp Eye Res. 166:13–20. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu R, Cheng Y, Yu J, Lv QL and Zhou HH:
Identification and validation of gene module associated with lung
cancer through coexpression network analysis. Gene. 563:56–62.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhai X, Xue Q, Liu Q, Guo Y and Chen Z:
Colon cancer recurrenceassociated genes revealed by WGCNA
coexpression network analysis. Mol Med Rep. 16:6499–6505. 2017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yan S: Integrative analysis of promising
molecular biomarkers and pathways for coronary artery disease using
WGCNA and MetaDE methods. Mol Med Rep. 18:2789–2797.
2018.PubMed/NCBI
|
16
|
Guo N, Zhang N, Yan L, Lian Z, Wang J, Lv
F, Wang Y and Cao X: Weighted gene coexpression network analysis in
identification of key genes and networks for ischemicreperfusion
remodeling myocardium. Mol Med Rep. 18:1955–1962. 2018.PubMed/NCBI
|
17
|
Modena BD, Bleecker ER, Busse WW, Erzurum
SC, Gaston BM, Jarjour NN, Meyer DA, Milosevic J, Tedrow JR, Wu W,
et al: Gene expression correlated with severe asthma
characteristics reveals heterogeneous mechanisms of severe disease.
Am J Respir Crit Care Med. 195:1449–1463. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu Z, Li M, Fang X, Shen L, Yao W, Fang
Z, Chen J, Feng X, Hu, Zeng Z, et al: Identification of surrogate
prognostic biomarkers for allergic asthma in nasal epithelial
brushing samples by WGCNA. J Cell Biochem. 120:5137–5150. 2018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yi G, Liang M, Li M, Fang X, Liu J, Lai Y,
Chen J, Yao W, Feng X, Hu, et al: A large lung gene expression
study identifying IL1B as a novel player in airway inflammation in
COPD airway epithelial cells. Inflamm Res. 67:539–551. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Brandsma CA, van den Berge M, Postma DS,
Jonker MR, Brouwer S, Paré PD, Sin DD, Bossé Y, Laviolette M,
Karjalainen J, et al: A large lung gene expression study
identifying fibulin-5 as a novel player in tissue repair in COPD.
Thorax. 70:21–32. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Botia JA, Vandrovcova J, Forabosco P,
Guelfi S, D'Sa K; United Kingdom Brain Expression Consortium, ;
Hardy J, Lewis CM, Ryten M and Weale ME: An additional k-means
clustering step improves the biological features of WGCNA gene
co-expression networks. Bmc Syst Biol. 11:472017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Guo L, Zhang K and Bing Z: Application of
a co-expression network for the analysis of aggressive and
non-aggressive breast cancer cell lines to predict the clinical
outcome of patients. Mol Med Rep. 16:7967–7978. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Grayson PC, Eddy S, Taroni JN, Lightfoot
YL, Mariani L, Parikh H, Lindenmeyer MT, Ju W, Greene CS, Godfrey
B, et al: Metabolic pathways and immunometabolism in rare kidney
diseases. Ann Rheum Dis. 77:1226–1233. 2018.PubMed/NCBI
|
25
|
Anders S and Huber W: Differential
expression analysis for sequence count data. Genome Biol.
11:R1062010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Langfelder P and Horvath S: Fast R
functions for robust correlations and hierarchical clustering. J
Stat Softw. 46:1–17. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The gene
ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
The Gene Ontology Consortium: The gene
ontology resource: 20 years and still going strong. Nucleic Acids
Res. 47:D330–D338. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sharma K: Obesity, oxidative stress, and
fibrosis in chronic kidney disease. Kidney Int Suppl. 4:113–117.
2014. View Article : Google Scholar
|
31
|
Boor P and Floege J: Chronic kidney
disease growth factors in renal fibrosis. Clin Exp Pharmacol
Physiol. 38:441–450. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Saborio P, Krieg RJ Jr, Chan W, Hahn S and
Chan JC: Pathophysiology of growth retardation in chronic renal
failure. Zhonghua Minguo Xiao Er Ke Yi Xue Hui Za Zhi. 39:21–27.
1998.PubMed/NCBI
|
33
|
Chen W, Lin X, Huang J, Tan K, Chen Y,
Peng W, Li W and Dai Y: Integrated profiling of microRNA expression
in membranous nephropathy using high-throughput sequencing
technology. Int J Mol Med. 33:25–34. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Navarro-Quiroz E, Pacheco-Lugo L, Lorenzi
H, Díaz-Olmos Y, Almendrales L, Rico E, Navarro R, España-Puccini
P, Iglesias A, Egea E and Aroca G: High-throughput sequencing
reveals circulating miRNAs as potential biomarkers of kidney damage
in patients with systemic lupus erythematosus. PLoS One.
11:e01662022016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Eichinger A, Ponsel S, Bergmann C,
Günthner R, Hoefele J, Amann K and Lange-Sperandio B: Cyclosporine
A responsive congenital nephrotic syndrome with single heterozygous
variants in NPHS1, NPHS2, and PLCE1. Pediatr Nephrol. 33:1269–1272.
2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ramanathan AS, Vijayan M, Rajagopal S,
Rajendiran P and Senguttuvan P: WT1 and NPHS2 gene mutation
analysis and clinical management of steroid-resistant nephrotic
syndrome. Mol Cell Biochem. 426:177–181. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kaverina NV, Eng DG, Largent AD, Daehn I,
Chang A, Gross KW, Pippin JW, Hohenstein P and Shankland SJ: WT1 is
necessary for the proliferation and migration of cells of renin
lineage following kidney podocyte depletion. Stem Cell Rep.
9:1152–1166. 2017. View Article : Google Scholar
|
38
|
Matsumoto H, Sasaki K, Bessho T, Kobayashi
E, Abe T, Sasazaki S, Oyama K and Mannen H: The SNPs in the ACACA
gene are effective on fatty acid composition in holstein milk. Mol
Biol Rep. 39:8637–8644. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Enserink JM and Kolodner RD: An overview
of Cdk1-controlled targets and processes. Cell Div. 5:112010.
View Article : Google Scholar : PubMed/NCBI
|
40
|
van den Heuvel S: Cell-cycle regulation.
WormBook. 1–16. 2005.PubMed/NCBI
|
41
|
Nishihara K, Masuda S, Nakagawa S,
Yonezawa A, Ichimura T, Bonventre JV and Inui K: Impact of cyclin
B2 and cell division cycle 2 on tubular hyperplasia in progressive
chronic renal failure rats. Am J Physiol Renal Physiol.
298:F923–F934. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hinkes BG, Mucha B, Vlangos CN, Gbadegesin
R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M and
Hildebrandt F; Arbeitsgemeinschaft für Paediatrische Nephrologie
Study Group, : Nephrotic syndrome in the first year of life: Two
thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2,
WT1, and LAMB2). Pediatrics. 119:E907–E919. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lozupone S, Tummolo A, Aceto G, Francioso
G, Gigante M, Gesualdo L, Messina G, De Palo T and Penza R: Nphs1
and Nphs2 mutations in congenital and Late-Onset childhood
nephrotic syndrome. Pediatr Nephrol. 24:1805. 2009.
|