1
|
Bond AM, Ming GL and Song H: Adult
mammalian neural stem cells and neurogenesis: Five decades later.
Cell Stem Cell. 17:385–395. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Taupin P: Adult neurogenesis in the
mammalian central nervous system: Functionality and potential
clinical interest. Med Sci Monit. 11:RA247–RA252. 2005.PubMed/NCBI
|
3
|
Zhao C, Deng W and Gage FH: Mechanisms and
functional implications of adult neurogenesis. Cell. 132:645–660.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Temple S: The development of neural stem
cells. Nature. 414:112–117. 2001. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Carthew RW and Sontheimer EJ: Origins and
mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Cui Y, Li T, Yang D, Li S and Le W: miR-29
regulates Tet1 expression and contributes to early differentiation
of mouse ESCs. Oncotarget. 7:64932–64941. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y,
Jia WH and Zhuang SM: Effects of microRNA-29 on apoptosis,
tumorigenicity, and prognosis of hepatocellular carcinoma.
Hepatology. 51:836–845. 2010.PubMed/NCBI
|
8
|
Fráguas MS, Eggenschwiler R, Hoepfner J,
Schiavinato JL, Haddad R, Oliveira LH, Araújo AG, Zago MA,
Panepucci RA and Cantz T: MicroRNA-29 impairs the early phase of
reprogramming process by targeting active DNA demethylation enzymes
and Wnt signaling. Stem Cell Res. 19:21–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hilz S, Fogarty EA, Modzelewski AJ, Cohen
PE and Grimson A: Transcriptome profiling of the developing male
germ line identifies the miR-29 family as a global regulator during
meiosis. RNA Biol. 14:219–235. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Z, Ma W, Wang L, Gong H, Tian Y,
Zhang J, Liu J, Lu H, Chen X and Liu Y: Activation of type 4
metabotropic glutamate receptor attenuates oxidative stress-induced
death of neural stem cells with inhibition of JNK and p38 MAPK
signaling. Stem Cells Dev. 24:2709–2722. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen L, Liu M, Luan Y and Liu Y, Zhang Z,
Ma B, Liu X and Liu Y: BMP6 protects retinal pigment epithelial
cells from oxidative stressinduced injury by inhibiting the MAPK
signaling pathways. Int J Mol Med. 42:1096–1105. 2018.PubMed/NCBI
|
13
|
Zhang Z, Hu F, Liu Y, Ma B, Chen X, Zhu K,
Shi Y, Wei T, Xing Y, Gao Y, et al: Activation of type 5
metabotropic glutamate receptor promotes the proliferation of rat
retinal progenitor cell via activation of the PI-3-K and MAPK
signaling pathways. Neuroscience. 322:138–151. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yuan TL and Cantley LC: PI3K pathway
alterations in cancer: Variations on a theme. Oncogene.
27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zheng H, Ying H, Yan H, Kimmelman AC,
Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, et al: p53
and Pten control neural and glioma stem/progenitor cell renewal and
differentiation. Nature. 455:1129–1133. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cao L, Liu P, Gill K, Reece EA, Cheema AK
and Zhao Z: Identification of novel cell survival regulation in
diabetic embryopathy via phospholipidomic profiling. Biochem
Biophys Res Commun. 470:599–605. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin X, Zhou X, Liu D, Yun L, Zhang L, Chen
X, Chai Q and Li L: MicroRNA-29 regulates high-glucose-induced
apoptosis in human retinal pigment epithelial cells through PTEN.
In Vitro Cell Dev Biol Anim. 52:419–426. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zanotti S, Gibertini S, Curcio M, Savadori
P, Pasanisi B, Morandi L, Cornelio F, Mantegazza R and Mora M:
Opposing roles of miR-21 and miR-29 in the progression of fibrosis
in Duchenne muscular dystrophy. Biochim Biophys Acta.
1852:1451–1464. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zou H, Ding Y, Shi W, Xu X, Gong A, Zhang
Z and Liu J: MicroRNA-29c/PTEN pathway is involved in mice brain
development and modulates neurite outgrowth in PC12 cells. Cell Mol
Neurobiol. 35:313–322. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tamguney T and Stokoe D: New insights into
PTEN. J Cell Sci. 120:4071–4079. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Janku F, Hong DS, Fu S, Piha-Paul SA,
Naing A, Falchook GS, Tsimberidou AM, Stepanek VM, Moulder SL, Lee
JJ, et al: Assessing PIK3CA and PTEN in early-phase trials with
PI3K/AKT/mTOR inhibitors. Cell Rep. 6:377–387. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kondo T, Funayama M, Tsukita K, Hotta A,
Yasuda A, Nori S, Kaneko S, Nakamura M, Takahashi R, Okano H, et
al: Focal transplantation of human iPSC-derived glial-rich neural
progenitors improves lifespan of ALS mice. Stem Cell Reports.
3:242–249. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Le Belle JE, Orozco NM, Paucar AA, Saxe
JP, Mottahedeh J, Pyle AD, Wu H and Kornblum HI: Proliferative
neural stem cells have high endogenous ROS levels that regulate
self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell
Stem Cell. 8:59–71. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu H, Goel V and Haluska FG: PTEN
signaling pathways in melanoma. Oncogene. 22:3113–3122. 2003.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Gregorian C, Nakashima J, Le Belle J, Ohab
J, Kim R, Liu A, Smith KB, Groszer M, Garcia AD, Sofroniew MV, et
al: Pten deletion in adult neural stem/progenitor cells enhances
constitutive neurogenesis. J Neurosci. 29:1874–1886. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Mulholland DJ, Kobayashi N, Ruscetti M,
Zhi A, Tran LM, Huang J, Gleave M and Wu H: Pten loss and RAS/MAPK
activation cooperate to promote EMT and metastasis initiated from
prostate cancer stem/progenitor cells. Cancer Res. 72:1878–1889.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang X, Zhu LL, Zhao T, Wu LY, Wu KW,
Schachner M, Xiao ZC and Fan M: CHL1 negatively regulates the
proliferation and neuronal differentiation of neural progenitor
cells through activation of the ERK1/2 MAPK pathway. Mol Cell
Neurosci. 46:296–307. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Torsvik A and Bjerkvig R: Mesenchymal stem
cell signaling in cancer progression. Cancer Treat Rev. 39:180–188.
2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hausenloy DJ, Mocanu MA and Yellon DM:
Cross-talk between the survival kinases during early reperfusion:
Its contribution to ischemic preconditioning. Cardiovasc Res.
63:305–312. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kriegel AJ, Liu Y, Fang Y, Ding X and
Liang M: The miR-29 family: Genomics, cell biology, and relevance
to renal and cardiovascular injury. Physiol Genomics. 44:237–244.
2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang Y, Zhang X, Li H, Yu J and Ren X: The
role of miRNA-29 family in cancer. Eur J Cell Biol. 92:123–128.
2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
He Y, Huang C, Lin X and Li J: MicroRNA-29
family, a crucial therapeutic target for fibrosis diseases.
Biochimie. 95:1355–1359. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB
and Yang JR: The role of miR-29b in cancer: Regulation, function,
and signaling. Onco Targets Ther. 8:539–548. 2015.PubMed/NCBI
|