1
|
Dahiya N and Morin PJ: MicroRNAs in
ovarian carcinomas. Endocr Relat Cancer. 17:F77–F89. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Greenlee RT, Hill-Harmon MB, Murray T and
Thun M: Cancer statistics, 2001. CA Cancer J Clin. 51:15–36. 2001.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wright JD, Shah M, Mathew L, Burke WM,
Culhane J, Goldman N, Schiff PB and Herzog TJ: Fertility
preservation in young women with epithelial ovarian cancer. Cancer.
115:4118–4126. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Iorio MV, Visone R, Di Leva G, Donati V,
Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, et
al: MicroRNA signatures in human ovarian cancer. Cancer Res.
67:8699–8707. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fung-Kee-Fung M, Oliver T, Elit L, Oza A,
Hirte HW and Bryson P: Optimal chemotherapy treatment for women
with recurrent ovarian cancer. Curr Oncol. 14:195–208. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Forsburg SL: Eukaryotic MCM proteins:
Beyond replication initiation. Microbiol Mol Biol Rev. 68:109–131.
2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lei M: The MCM complex: Its role in DNA
replication and implications for cancer therapy. Curr Cancer Drug
Targets. 5:365–380. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bell SP and Dutta A: DNA replication in
eukaryotic cells. Annu Rev Biochem. 71:333–374. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dimitrova DS, Todorov IT, Melendy T and
Gilbert DM: Mcm2, but not RPA, is a component of the mammalian
early G1-phase prereplication complex. J Cell Biol. 146:709–722.
1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mendez J and Stillman B: Perpetuating the
double helix: Molecular machines at eukaryotic DNA replication
origins. Bioessays. 25:1158–1167. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Parker MW, Botchan MR and Berger JM:
Mechanisms and regulation of DNA replication initiation in
eukaryotes. Crit Rev Biochem Mol Biol. 52:107–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Romanowski P and Madine MA: Mechanisms
restricting DNA replication to once per cell cycle: The role of
Cdc6p and ORC. Trends Cell Biol. 7:9–10. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hennessy KM, Lee A, Chen E and Botstein D:
A group of interacting yeast DNA replication genes. Genes Dev.
5:958–969. 1991. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gibson SI, Surosky RT and Tye BK: The
phenotype of the minichromosome maintenance mutant mcm3 is
characteristic of mutants defective in DNA replication. Mol Cell
Biol. 10:5707–5720. 1990. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kunnev D, Rusiniak ME, Kudla A, Freeland
A, Cady GK and Pruitt SC: DNA damage response and tumorigenesis in
Mcm2-deficient mice. Oncogene. 29:3630–3638. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pruitt SC, Bailey KJ and Freeland A:
Reduced Mcm2 expression results in severe stem/progenitor cell
deficiency and cancer. Stem Cells. 25:3121–3132. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yousef EM, Furrer D, Laperriere DL, Tahir
MR, Mader S, Diorio C and Gaboury LA: MCM2: An alternative to Ki-67
for measuring breast cancer cell proliferation. Mod Pathol.
30:682–697. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
de Andrade BA, León JE, Carlos R,
Delgado-Azañero W, Mosqueda-Taylor A and de Almeida OP: Expression
of minichromosome maintenance 2, Ki-67, and geminin in oral nevi
and melanoma. Ann Diagn Pathol. 17:32–36. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Czyzewska J, Guzińska-Ustymowicz K,
Pryczynicz A, Kemona A and Bandurski R: Immunohistochemical
evaluation of Ki-67, PCNA and MCM2 proteins proliferation index
(PI) in advanced gastric cancer. Folia Histochem Cytobiol.
47:289–296. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guzińska-Ustymowicz K, Pryczynicz A,
Kemona A and Czyzewska J: Correlation between proliferation
markers: PCNA, Ki-67, MCM-2 and antiapoptotic protein Bcl-2 in
colorectal cancer. Anticancer Res. 29:3049–3052. 2009.PubMed/NCBI
|
21
|
Gakiopoulou H, Korkolopoulou P, Levidou G,
Thymara I, Saetta A, Piperi C, Givalos N, Vassilopoulos I, Ventouri
K, Tsenga A, et al: Minichromosome maintenance proteins 2 and 5 in
non-benign epithelial ovarian tumours: Relationship with cell cycle
regulators and prognostic implications. Br J Cancer. 97:1124–1134.
2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Scott IS, Heath TM, Morris LS, Rushbrook
SM, Bird K, Vowler SL, Arends MJ and Coleman N: A novel
immunohistochemical method for estimating cell cycle phase
distribution in ovarian serous neoplasms: Implications for the
histopathological assessment of paraffin-embedded specimens. Br J
Cancer. 90:1583–1590. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dudderidge TJ, Stoeber K, Loddo M,
Atkinson G, Fanshawe T, Griffiths DF and Williams GH: Mcm2,
Geminin, and KI67 define proliferative state and are prognostic
markers in renal cell carcinoma. Clin Cancer Res. 11:2510–2517.
2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kodani I, Osaki M, Shomori K, Araki K,
Goto E, Ryoke K and Ito H: Minichromosome maintenance 2 expression
is correlated with mode of invasion and prognosis in oral squamous
cell carcinomas. J Oral Pathol Med. 32:468–474. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Feng D, Tu Z, Wu W and Liang C: Inhibiting
the expression of DNA replication-initiation proteins induces
apoptosis in human cancer cells. Cancer Res. 63:7356–7364.
2003.PubMed/NCBI
|
26
|
McGuire WP III and Markman M: Primary
ovarian cancer chemotherapy: Current standards of care. Br J
Cancer. 89 (Suppl 3):S3–S8. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mah LJ, El-Osta A and Karagiannis TC:
GammaH2AX: A sensitive molecular marker of DNA damage and repair.
Leukemia. 24:679–686. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cortez D, Glick G and Elledge SJ:
Minichromosome maintenance proteins are direct targets of the ATM
and ATR checkpoint kinases. Proc Natl Acad Sci USA.
101:10078–10083. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bates S and Vousden KH: p53 in signaling
checkpoint arrest or apoptosis. Curr Opin Genet Dev. 6:12–18. 1996.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Gottlieb TM and Oren M: p53 and apoptosis.
Semin Cancer Biol. 8:359–368. 1998. View Article : Google Scholar : PubMed/NCBI
|
31
|
Janus F, Albrechtsen N, Dornreiter I,
Wiesmüller L, Grosse F and Deppert W: The dual role model for p53
in maintaining genomic integrity. Cell Mol Life Sci. 55:12–27.
1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Macleod K, Mullen P, Sewell J, Rabiasz G,
Lawrie S, Miller E, Smyth JF and Langdon SP: Altered ErbB receptor
signaling and gene expression in cisplatin-resistant ovarian
cancer. Cancer Res. 65:6789–6800. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Labib K: How do Cdc7 and cyclin-dependent
kinases trigger the initiation of chromosome replication in
eukaryotic cells? Genes Dev. 24:1208–1219. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bochman ML and Schwacha A: The Mcm2-7
complex has in vitro helicase activity. Mol Cell. 31:287–293. 2008.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Shima N, Alcaraz A, Liachko I, Buske TR,
Andrews CA, Munroe RJ, Hartford SA, Tye BK and Schimenti JC: A
viable allele of Mcm4 causes chromosome instability and mammary
adenocarcinomas in mice. Nat Genet. 39:93–98. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang C, Wen Y, Li H, Zhang D, Zhang N, Shi
X, Jiang B, Ma X, Yang P, Tang H, et al: Overexpression of
minichromosome maintenance 2 predicts poor prognosis in patients
with gastric cancer. Oncol Rep. 27:135–142. 2012.PubMed/NCBI
|
37
|
Obermann EC, Went P, Zimpfer A, Tzankov A,
Wild PJ, Stoehr R, Pileri SA and Dirnhofer S: Expression of
minichromosome maintenance protein 2 as a marker for proliferation
and prognosis in diffuse large B-cell lymphoma: A tissue microarray
and clinico-pathological analysis. BMC Cancer. 5:1622005.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Crevel G, Hashimoto R, Vass S, Sherkow J,
Yamaguchi M, Heck MM and Cotterill S: Differential requirements for
MCM proteins in DNA replication in Drosophila S2 cells. PLoS One.
2:e8332007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tsao CC, Geisen C and Abraham RT:
Interaction between human MCM7 and Rad17 proteins is required for
replication checkpoint signaling. EMBO J. 23:4660–4669. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Oehlmann M, Score AJ and Blow JJ: The role
of Cdc6 in ensuring complete genome licensing and S phase
checkpoint activation. J Cell Biol. 165:181–190. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ibarra A, Schwob E and Méndez J: Excess
MCM proteins protect human cells from replicative stress by
licensing backup origins of replication. Proc Natl Acad Sci USA.
105:8956–8961. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lei M, Kawasaki Y and Tye BK: Physical
interactions among Mcm proteins and effects of Mcm dosage on DNA
replication in Saccharomyces cerevisiae. Mol Cell Biol.
16:5081–5090. 1996. View Article : Google Scholar : PubMed/NCBI
|
43
|
Rowles A, Chong JP, Brown L, Howell M,
Evan GI and Blow JJ: Interaction between the origin recognition
complex and the replication licensing system in Xenopus. Cell.
87:287–296. 1996. View Article : Google Scholar : PubMed/NCBI
|
44
|
Stoeber K, Tlsty TD, Happerfield L, Thomas
GA, Romanov S, Bobrow L, Williams ED and Williams GH: DNA
replication licensing and human cell proliferation. J Cell Sci.
114:2027–2041. 2001.PubMed/NCBI
|
45
|
Woodward AM, Göhler T, Luciani MG,
Oehlmann M, Ge X, Gartner A, Jackson DA and Blow JJ: Excess Mcm2-7
license dormant origins of replication that can be used under
conditions of replicative stress. J Cell Biol. 173:673–683. 2006.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Hyrien O, Marheineke K and Goldar A:
Paradoxes of eukaryotic DNA replication: MCM proteins and the
random completion problem. Bioessays. 25:116–125. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Masata M, Malínský J, Fidlerová H, Smirnov
E and Raska I: Dynamics of replication foci in early S phase as
visualized by cross-correlation function. J Struct Biol. 151:61–68.
2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kunnev D, Freeland A, Qin M, Leach RW,
Wang J, Shenoy RM and Pruitt SC: Effect of minichromosome
maintenance protein 2 deficiency on the locations of DNA
replication origins. Genome Res. 25:558–569. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kwon HJ, Hong YK, Park C, Choi YH, Yun HJ,
Lee EW and Kim BW: Widdrol induces cell cycle arrest, associated
with MCM down-regulation, in human colon adenocarcinoma cells.
Cancer Lett. 290:96–103. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Minagawa Y, Kigawa J, Itamochi H, Kanamori
Y, Shimada M, Takahashi M and Terakawa N: Cisplatin-resistant HeLa
cells are resistant to apoptosis via p53-dependent and -independent
pathways. Jpn J Cancer Res. 90:1373–1379. 1999. View Article : Google Scholar : PubMed/NCBI
|
51
|
Asada N, Tsuchiya H and Tomita K: De novo
deletions of p53 gene and wild-type p53 correlate with acquired
cisplatin-resistance in human osteosarcoma OST cell line.
Anticancer Res. 19:5131–5137. 1999.PubMed/NCBI
|
52
|
Kigawa J, Sato S, Shimada M, Takahashi M,
Itamochi H, Kanamori Y and Terakawa N: p53 gene status and
chemosensitivity in ovarian cancer. Hum Cell. 14:165–171.
2001.PubMed/NCBI
|