1
|
Burnouf T, Goubran HA, Chou ML, Devos D
and Radosevic M: Platelet microparticles: Detection and assessment
of their paradoxical functional roles in disease and regenerative
medicine. Blood Rev. 28:155–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Semple JW, Italiano JE Jr and Freedman J:
Platelets and the immune continuum. Nat Rev Immunol. 11:264–274.
2011. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Clark SR, Thomas CP, Hammond VJ,
Aldrovandi M, Wilkinson GW, Hart KW, Murphy RC, Collins PW and
O'Donnell VB: Characterization of platelet aminophospholipid
externalization reveals fatty acids as molecular determinants that
regulate coagulation. Proc Natl Acad Sci USA. 110:5875–5880. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Mooberry MJ and Key NS: Microparticle
analysis in disorders of hemostasis and thrombosis. Cytometry A.
89:111–122. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Montoro-García S, Shantsila E, Marín F,
Blann A and Lip GY: Circulating microparticles: New insights into
the biochemical basis of microparticle release and activity. Basic
Res Cardiol. 106:911–923. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kailashiya J: Platelet-derived
microparticles analysis: Techniques, challenges and
recommendations. Anal Biochem. 546:78–85. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Burnier L, Fontana P, Kwak BR and
Angelillo-Scherrer A: Cell-derived microparticles in haemostasis
and vascular medicine. Thromb Haemost. 101:439–451. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Horstman LL and Ahn YS: Platelet
microparticles: A wide-angle perspective. Crit Rev Oncol Hematol.
30:111–142. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
VanWijk MJ, VanBavel E, Sturk A and
Nieuwland R: Microparticles in cardiovascular diseases. Cardiovasc
Res. 59:277–287. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cauwenberghs S, Feijge MA, Harper AG, Sage
SO, Curvers J and Heemskerk JW: Shedding of procoagulant
microparticles from unstimulated platelets by integrin-mediated
destabilization of actin cytoskeleton. FEBS Lett. 580:5313–5320.
2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Reininger AJ, Heijnen HF, Schumann H,
Specht HM, Schramm W and Ruggeri ZM: Mechanism of platelet adhesion
to von Willebrand factor and microparticle formation under high
shear stress. Blood. 107:3537–3545. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sims PJ, Faioni EM, Wiedmer T and Shattil
SJ: Complement proteins C5b-9 cause release of membrane vesicles
from the platelet surface that are enriched in the membrane
receptor for coagulation factor Va and express prothrombinase
activity. J Biol Chem. 263:18205–18212. 1988.PubMed/NCBI
|
13
|
Johnson L, Reade MC, Hyland RA, Tan S and
Marks DC: In vitro comparison of cryopreserved and liquid
platelets: Potential clinical implications. Transfusion.
55:838–847. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Brown GT and McIntyre TM:
Lipopolysaccharide signaling without a nucleus: Kinase cascades
stimulate platelet shedding of proinflammatory IL-1β-rich
microparticles. J Immunol. 186:5489–5496. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Boilard E, Paré G, Rousseau M, Cloutier N,
Dubuc I, Lévesque T, Borgeat P and Flamand L: Influenza virus H1N1
activates platelets through FcgammaRIIA signaling and thrombin
generation. Blood. 123:2854–2863. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pan Y, Liang H, Liu H, Li D, Chen X, Li L,
Zhang CY and Zen K: Platelet-Secreted MicroRNA-223 promotes
endothelial cell apoptosis induced by advanced glycation end
products via targeting the insulin-like growth factor 1 receptor. J
Immunol. 192:437–446. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bulut D, Becker V and Mügge A:
Acetylsalicylate reduces endothelial and platelet-derived
microparticles in patients with coronary artery disease. Can J
Physiol Pharmacol. 89:239–244. 2011. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Murphy S and Gardner FH: Effect of storage
temperature on maintenance of platelet viability-deleterious effect
of refrigerated storage. N Engl J Med. 280:1094–1098. 1969.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Bode AP and Knupp CL: Effect of cold
storage on platelet glycoprotein 1B and vesiculation. Transfusion.
34:690–696. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gupta N, Li W, Willard B, Silverstein RL
and McIntyre TM: Proteasome proteolysis supports stimulated
platelet function and thrombosis. Arterioscler Thromb Vasc Biol.
34:160–168. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Morel O, Jesel L, Freyssinet JM and Toti
F: Cellular mechanisms underlying the formation of circulating
microparticles. Arterioscler Thromb Vasc Biol. 31:15–26. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Tersteeg C, Heijnen HF, Eckly A,
Pasterkamp G, Urbanus RT, Maas C, Hoefer IE, Nieuwland R, Farndale
RW, Gachet C, et al: FLow-induced PRotrusions (FLIPRs): A
platelet-derived platform for the retrieval of microparticles by
monocytes and neutrophils. Circ Res. 114:780–791. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mattheij NJ, Gilio K, van Kruchten R, Jobe
SM, Wieschhaus AJ, Chishti AH, Collins P, Heemskerk JW and Cosemans
JM: Dual mechanism of integrin alphaIIbβ3 closure in procoagulant
platelets. J Biol Chem. 288:13325–13336. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bettache N, Gaffet P, Allegre N, Maurin L,
Toti F, Freyssinet JM and Bienvenüe A: Impaired redistribution of
aminophospholipids with distinctive cell shape change during
Ca2+-induced activation of platelets from a patient with
Scott syndrome. Br J Haematol. 101:50–58. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Choo HJ, Saafir TB, Mkumba L, Wagner MB
and Jobe SM: Mitochondrial calcium and reactive oxygen species
regulate agonist-initiated platelet phosphatidylserine exposure.
Arterioscler Thromb Vasc Biol. 32:2946–2955. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Arraud N, Linares R, Tan S, Gounou C,
Pasquet JM, Mornet S and Brisson AR: Extracellular vesicles from
blood plasma: Determination of their morphology, size, phenotype
and concentration. J Thromb Haemost. 12:614–627. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nolan JP: Flow cytometry of extracellular
vesicles: Potential, Pitfalls, and Prospects. Curr Protoc Cytom.
73:1–16. 2015.PubMed/NCBI
|
28
|
Flaumenhaft R, Dilks JR, Richardson J,
Alden E, Patel-Hett SR, Battinelli E, Klement GL, Sola-Visner M and
Italiano JE Jr: Megakaryocyte-derived microparticles: Direct
visualization and distinction from platelet-derived microparticles.
Blood. 113:1112–1121. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rank A, Nieuwland R, Delker R, Köhler A,
Toth B, Pihusch V, Wilkowski R and Pihusch R: Cellular origin of
platelet-derived microparticles in vivo. Thromb Res. 126:e255–e259.
2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Baranyai T, Herczeg K, Onódi Z, Voszka I,
Módos K, Marton N, Nagy G, Mäger I, Wood MJ, El Andaloussi S, et
al: Isolation of exosomes from blood plasma: Qualitative and
quantitative comparison of ultracentrifugation and size exclusion
chromatography methods. PLoS One. 10:e01456862015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Brisson AR, Tan S, Linares R, Gounou C and
Arraud N: Extracellular vesicles from activated platelets: A
semiquantitative cryo-electron microscopy and immuno-gold labeling
study. Platelets. 28:263–271. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yuana Y, Koning RI, Kuil ME, Rensen PC,
Koster AJ, Bertina RM and Osanto S: Cryo-electron microscopy of
extracellular vesicles in fresh plasma. J Extracell Vesicles.
22013.doi: 10.3402/jev.v2i0.21494.
|
33
|
Ponomareva AA, Nevzorova TA, Mordakhanova
ER, Andrianova IA, Rauova L, Litvinov RI and Weisel JW:
Intracellular origin and ultrastructure of platelet-derived
microparticles. J Thromb Haemost. 15:1655–1667. 2017. View Article : Google Scholar : PubMed/NCBI
|