1
|
Parums DV: Current status of targeted
therapy in non-small cell lung cancer. Drugs Today (Barc).
50:503–525. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Blandin Knight S, Crosbie PA, Balata H,
Chudziak J, Hussell T and Dive C: Progress and prospects of early
detection in lung cancer. Open Biol. 7(pii): 1700702017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kahremany S, Livne A, Gruzman A,
Senderowitz H and Sasson S: Activation of PPARdelta: From computer
modelling to biological effects. Br J Pharmacol. 172:754–770. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Marion-Letellier R, Savoye G and Ghosh S:
Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol.
785:44–49. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Reddy AT, Lakshmi SP and Reddy RC:
PPARgamma as a novel therapeutic target in lung cancer. PPAR Res.
2016:89725702016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lin CH, Funayama S, Peng SF, Kuo CL and
Chung JG: The ethanol extraction of prepared Psoralea corylifolia
induces apoptosis and autophagy and alteres genes expression
assayed by cDNA microarray in human prostate cancer PC-3 cells.
Environ Toxicol. 33:770–788. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Feng L, Luo H, Xu Z, Yang Z, Du G, Zhang
Y, Yu L, Hu K, Zhu W, Tong Q, et al: Bavachinin, as a novel natural
pan-PPAR agonist, exhibits unique synergistic effects with
synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid
metabolism in db/db and diet-induced obese mice. Diabetologia.
59:1276–1286. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Du G, Zhao Y, Feng L, Yang Z, Shi J, Huang
C, Li B, Guo F, Zhu W and Li Y: Design, Synthesis, and
Structure-activity relationships of bavachinin analogues as
peroxisome proliferator-activated Receptor γ agonists. ChemMedChem.
12:183–193. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ge L, Cui Y, Cheng K and Han J:
Isopsoralen enhanced osteogenesis by targeting AhR/ERα. Molecules.
23(pii): E26002018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chan FK, Moriwaki K and De Rosa MJ:
Detection of necrosis by release of lactate dehydrogenase activity.
Methods Mol Biol. 979:65–70. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Marimuthu P and Singaravelu K: Deciphering
the crucial residues involved in heterodimerization of Bak peptide
and anti-apoptotic proteins for apoptosis. J Biomol Struct Dyn.
36:1637–1648. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Guo L and Tabrizchi R: Peroxisome
proliferator-activated receptor gamma as a drug target in the
pathogenesis of insulin resistance. Pharmacol Ther. 111:145–173.
2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pai MY, Lomenick B, Hwang H, Schiestl R,
McBride W, Loo JA and Huang J: Drug affinity responsive target
stability (DARTS) for small-molecule target identification. Methods
Mol Biol. 1263:287–298. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lomenick B, Jung G, Wohlschlegel JA and
Huang J: Target identification using drug affinity responsive
target stability (DARTS). Curr Protoc Chem Biol. 3:163–180.
2011.PubMed/NCBI
|
16
|
Jensen AJ, Martinez Molina D and Lundbäck
T: CETSA: A target engagement assay with potential to transform
drug discovery. Future Med Chem. 7:975–978. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zou Z, Chang H, Li H and Wang S: Induction
of reactive oxygen species: An emerging approach for cancer
therapy. Apoptosis. 22:1321–1335. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Alam F, Khan GN and Asad M: Psoralea
corylifolia L: Ethnobotanical, biological, and chemical aspects: A
review. Phytother Res. 32:597–615. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Han EJ, Im CN, Park SH, Moon EY and Hong
SH: Combined treatment with peroxisome proliferator-activated
receptor (PPAR) gamma ligands and gamma radiation induces apoptosis
by PPARγ-independent up-regulation of reactive oxygen
species-induced deoxyribonucleic acid damage signals in non-small
cell lung cancer cells. Int J Radiat Oncol Biol Phys. 85:e239–e248.
2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sarniak A, Lipińska J, Tytman K and
Lipińska S: Endogenous mechanisms of reactive oxygen species (ROS)
generation. Postepy Hig Med Dosw (Online). 70:1150–1165. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Juránek I and Bezek S: Controversy of free
radical hypothesis: Reactive oxygen species-cause or consequence of
tissue injury? Gen Physiol Biophys. 24:263–278. 2005.PubMed/NCBI
|
22
|
Srivastava N, Kollipara RK, Singh DK,
Sudderth J, Hu Z, Nguyen H, Wang S, Humphries CG, Carstens R,
Huffman KE, et al: Inhibition of cancer cell proliferation by
PPARgamma is mediated by a metabolic switch that increases reactive
oxygen species levels. Cell Metab. 20:650–661. 2014. View Article : Google Scholar : PubMed/NCBI
|