1
|
Yu ZW, Xu YQ, Zhang XJ, Pan JR, Xiang HX,
Gu XH, Ji SB and Qian J: Mutual regulation between miR-21 and the
TGFβ/Smad signaling pathway in human bronchial fibroblasts promotes
airway remodeling. J Asthma. 56:341–349. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lai T, Tian B, Cao C, Hu Y, Zhou J, Wang
Y, Wu Y, Li Z, Xu X, Zhang M, et al: HDAC2 suppresses
IL17A-mediated airway remodeling in human and experimental modeling
of COPD. Chest. 153:863–875. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ricciardolo FLM, Folkerts G, Folino A and
Mognetti B: Bradykinin in asthma: Modulation of airway inflammation
and remodelling. Eur J Pharmacol. 827:181–188. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Eapen MS, Myers S, Lu W, Tanghe C, Sharma
P and Sohal SS: sE-cadherin and sVE-cadherin indicate active
epithelial/endothelial to mesenchymal transition (EMT and EndoMT)
in smokers and COPD: Implications for new biomarkers and
therapeutics. Biomarkers. 23:709–711. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mahmood MQ, Reid D, Ward C, Muller HK,
Knight DA, Sohal SS and Walters EH: Transforming growth factor
(TGF) β1 and Smad signalling pathways: A likely key to
EMT-associated COPD pathogenesis. Respirology. 22:133–140. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sun ZQ, Chen G, Guo Q, Li HF and Wang Z:
In vivo and in vitro effects of hyperplasia suppressor gene on the
proliferation and apoptosis of lung adenocarcinoma A549 cells.
Biosci Reports. 38:BSR201803912018. View Article : Google Scholar
|
7
|
Luo L, Gong YQ, Qi X, Lai W, Lan H and Luo
Y: Effect of tumor suppressor PTEN gene on apoptosis and cell cycle
of human airway smooth muscle cells. Mol Cell Biochem. 375:1–9.
2013.PubMed/NCBI
|
8
|
Jiang GJ, Han M, Zheng B and Wen JK:
Hyperplasia suppressor gene associates with smooth muscle
alpha-actin and is involved in the redifferentiation of vascular
smooth muscle cells. Heart Vessels. 21:315–320. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Guo YH, Li Q, Yu HY and Gao W: Hyperplasia
suppressor gene induces vascular smooth muscle cell apoptosis.
Beijing Da Xue Xue Bao Yi Xue Ban. 39:394–398. 2007.(In Chinese).
PubMed/NCBI
|
10
|
Wu L, Li Z, Zhang Y, Zhang P, Zhu X, Huang
J, Ma T, Lu T, Song Q, Li Q, et al: Adenovirus-expressed human
hyperplasia suppressor gene induces apoptosis in cancer cells. Mol
Cancer Ther. 7:222–232. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang Y, Du Q, Qiu XY, Tian XX and Fang
WG: Over expression of hyperplasia suppressor gene inhibits the
malignant phenotype of breast cancer cell. Zhonghua Bing Li Xue Za
Zhi. 39:259–263. 2010.(In Chinese). PubMed/NCBI
|
12
|
Zheng-Xing GE, Bo LI, Zhou X and Chang LI:
rHSG gene regulates airway fibroblast proliferation and apoptosis
of COPD rats. Basic Clin Med. 33:1235–1241. 2013.
|
13
|
Villar J, Cabrera NE, Valladares F, Casula
M, Flores C, Blanch L, Quilez ME, Santana-Rodríguez N, Kacmarek RM
and Slutsky AS: Activation of the Wnt/β-catenin signaling pathway
by mechanical ventilation is associated with ventilator-induced
pulmonary fibrosis in healthy lungs. PLoS One. 6:e239142011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chilosi M, Poletti V, Zamò A, Lestani M,
Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, et
al: Aberrant Wnt/beta-catenin pathway activation in idiopathic
pulmonary fibrosis. Am J Pathol. 162:1495–1502. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Königshoff M, Balsara N, Pfaff EM, Kramer
M, Chrobak I, Seeger W and Eickelberg O: Functional Wnt signaling
is increased in idiopathic pulmonary fibrosis. PLoS One.
3:e21422008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao
Y, Cheng Y, Yang M, Wang Q, Feng X, et al: MiRNA-194 activates the
Wnt/β-catenin signaling pathway in gastric cancer by targeting the
negative Wnt regulator, SUFU. Cancer Lett. 385:117–127. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Qu J, Yue L, Gao J and Yao H: Perspectives
on Wnt signal pathway in the pathogenesis and therapeutics in
chronic obstructive pulmonary disease. J Pharmacol Exp Ther.
369:473–480. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tao H, Yang JJ, Shi KH and Li J: Wnt
signaling pathway in cardiac fibrosis: New insights and directions.
Metabolism. 65:30–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nishikawa K, Osawa Y and Kimura K:
Wnt/β-catenin signaling as a potential target for the treatment of
liver cirrhosis using antifibrotic drugs. Int J Mol Sci.
19:E31032018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lewis CC, Chu HW, Westcott JY, Tucker A,
Langmack EL, Sutherland ER and Kraft M: Airway fibroblasts exhibit
a synthetic phenotype in severe asthma. J Allergy Clin Immunol.
115:534–540. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Song Z, Chen H, Xu W, Wu S and Zhu G:
Basolateral amygdala calpain is required for extinction of
contextual fear-memory. Neurobiol Learn Mem. 155:180–188. 2018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu G, Wang X, Wu S and Li Q: Involvement
of activation of PI3K/Akt pathway in the protective effects of
puerarin against MPP+-induced human neuroblastoma SH-SY5Y cell
death. Neurochem Int. 60:400–408. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Aigon A and Billecocq S: Prevalence and
impact on quality of life of urinary incontinence in an adult
population with chronic obstructive pulmonary diseases, literature
review. Prog Urol. 28:962–972. 2018.(In French). View Article : Google Scholar : PubMed/NCBI
|
26
|
Oshagbemi OA, Keene SJ, Driessen JHM,
Jordan R, Wouters EFM, de Boer A, de Vries F and Franssen FME:
Trends in moderate and severe exacerbations among COPD patients in
the UK from 2005 to 2013. Respir Med. 144:1–6. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Moon JY, Leitao Filho FS, Shahangian K,
Takiguchi H and Sin DD: Blood and sputum protein biomarkers for
chronic obstructive pulmonary disease (COPD). Expert Rev
Proteomics. 15:923–935. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Reuter S, Beckert H and Taube C: Take the
Wnt out of the inflammatory sails: Modulatory effects of Wnt in
airway diseases. Lab Invest. 96:177–185. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bartel S, Carraro G, Alessandrini F,
Krauss-Etschmann S, Ricciardolo FLM and Bellusci S: miR-142-3p is
associated with aberrant WNT signaling during airway remodeling in
asthma. Am J Physiol Lung Cell Mol Physiol. 315:L328–L333. 2018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Royer PJ, Henrio K, Pain M, Loy J, Roux A,
Tissot A, Lacoste P, Pison C, Brouard S and Magnan A; COLT
consortium, : TLR3 promotes MMP-9 production in primary human
airway epithelial cells through Wnt/β-catenin signaling. Respir
Res. 18:2082017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Koopmans T and Gosens R: Revisiting asthma
therapeutics: Focus on WNT signal transduction. Drug Discov Today.
23:49–62. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hussain M, Xu C, Lu M and Wu X, Tang L and
Wu X: Wnt/β-catenin signaling links embryonic lung development and
asthmatic airway remodeling. Biochim Biophys Acta Mol Basis Dis.
1863:3226–3242. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Vallée A, Lecarpentier Y, Guillevin R and
Vallée JN: Interactions between TGF-β1, canonical WNT/β-catenin
pathway and PPAR γ in radiation-induced fibrosis. Oncotarget.
8:90579–90604. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Si Y, Bai J, Wu J, Li Q, Mo Y, Fang R and
Lai W: LncRNA PlncRNA1 regulates proliferation and differentiation
of hair follicle stem cells through TGFbeta1mediated
Wnt/betacatenin signal pathway. Mol Med Rep. 17:1191–1197.
2018.PubMed/NCBI
|
35
|
Ma F, Li W, Liu C, Li W, Yu H, Lei B, Ren
Y, Li Z, Pang D and Qian C: MiR-23a promotes TGF-β1-induced EMT and
tumor metastasis in breast cancer cells by directly targeting CDH1
and activating Wnt/β-catenin signaling. Oncotarget. 8:69538–69550.
2017.PubMed/NCBI
|
36
|
Li M, Yuan Y, Chen Q, Me R, Gu Q, Yu Y,
Sheng M and Ke B: Expression of Wnt/β-catenin signaling pathway and
its regulatory role in type I collagen with TGF-β1 in scleral
fibroblasts from an experimentally induced myopia guinea pig model.
J Ophthalmol. 2016:51265602016.PubMed/NCBI
|
37
|
Godinas L, Corhay JL, Henket M, Guiot J,
Louis R and Moermans C: Increased production of TGF-β1 from sputum
cells of COPD: Relationship with airway obstruction. Cytokine.
99:1–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Westergren-Thorsson G, Bagher M,
Andersson-Sjoland A, Andersson-Sjöland A, Thiman L, Löfdahl CG,
Hallgren O, Bjermer L and Larsson-Callerfelt AK: VEGF synthesis is
induced by prostacyclin and TGF-beta in distal lung fibroblasts
from COPD patients and control subjects: Implications for pulmonary
vascular remodelling. Respirology. 23:68–75. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen H, Zhang R, Zheng Q, Yan X, Wu S and
Chen Y: Impact of body mass index on long-term blood pressure
variability: A cross-sectional study in a cohort of Chinese adults.
BMC Public Health. 18:11932018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Di Stefano A, Sangiorgi C, Gnemmi I,
Casolari P, Brun P, Ricciardolo FLM, Contoli M, Papi A, Maniscalco
P, Ruggeri P, et al: TGF-β signaling pathways in different
compartments of the lower airways of patients with stable COPD.
Chest. 153:851–862. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhdan VN, Potyazhenko MМ, Khaymenova GS,
Lyulka NN, Dubrovinskaya TV and Ivanitsky IV: Intensifying approach
to the therapy of patients with constellation of the diseases:
Chronic obstructive pulmonary disease and osteoarthritis. Wiad Lek.
70:578–580. 2017.PubMed/NCBI
|
42
|
Zhao Y, Qiao X, Wang L, Tan TK, Zhao H,
Zhang Y, Zhang J, Rao P, Cao Q, Wang Y, et al: Matrix
metalloproteinase 9 induces endothelial-mesenchymal transition via
Notch activation in human kidney glomerular endothelial cells. BMC
Cell Biol. 17:212016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yang Z, Li K, Liang Q, Zheng G, Zhang S,
Lao X, Liang Y and Liao G: Elevated hydrostatic pressure promotes
ameloblastoma cell invasion through upregulation of MMP-2 and MMP-9
expression via Wnt/β-catenin signalling. J Oral Pathol Med.
47:836–846. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lu J, Zhu Y, Feng W, Pan Y, Li S, Han D,
Liu L, Xie X, Wang G and Li M: Platelet-derived growth factor
mediates interleukin-13-induced collagen I production in mouse
airway fibroblasts. J Biosci. 39:693–700. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Song S, Zhang M, Yi Z, Zhang H, Shen T, Yu
X, Zhang C, Zheng X, Yu L, Ma C, et al: The role of
PDGF-B/TGF-β1/neprilysin network in regulating
endothelial-to-mesenchymal transition in pulmonary artery
remodeling. Cell Signal. 28:1489–1501. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhao H, Cui Y, Dupont J, Sun H,
Hennighausen L and Yakar S: Overexpression of the tumor suppressor
gene phosphatase and tensin homologue partially inhibits
wnt-1-induced mammary tumorigenesis. Cancer Res. 65:6864–6873.
2005. View Article : Google Scholar : PubMed/NCBI
|