1
|
Bizama C, García P, Espinoza JA, Weber H,
Leal P, Nervi B and Roa JC: Targeting specific molecular pathways
holds promise for advanced gallbladder cancer therapy. Cancer Treat
Rev. 41:222–234. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Randi G, Malvezzi M, Levi F, Ferlay J,
Negri E, Franceschi S and La Vecchia C: Epidemiology of biliary
tract cancers: An update. Ann Oncol. 20:146–155. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Goetze TO: Gallbladder carcinoma:
Prognostic factors and therapeutic options. World J Gastroenterol.
21:12211–12217. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hundal R and Shaffer EA: Gallbladder
cancer: Epidemiology and outcome. Clin Epidemiol. 6:99–109.
2014.PubMed/NCBI
|
5
|
Yeh YT, Dai HY and Chien CY: Amplification
of MPZL1/PZR gene in hepatocellular carcinoma. Hepatobiliary Surg
Nutr. 3:87–90. 2014.PubMed/NCBI
|
6
|
Zhao ZJ and Zhao R: Purification and
cloning of PZR, a binding protein and putative physiological
substrate of tyrosine phosphatase SHP-2. J Biol Chem.
273:29367–29372. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Taniguchi K and Karin M: IL-6 and related
cytokines as the critical lynchpins between inflammation and
cancer. Semin Immunol. 26:54–74. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zannettino AC, Roubelakis M, Welldon KJ,
Jackson DE, Simmons PJ, Bendall LJ, Henniker A, Harrison KL, Niutta
S, Bradstock KF and Watt SM: Novel mesenchymal and haematopoietic
cell isoforms of the SHP-2 docking receptor, PZR: Identification,
molecular cloning and effects on cell migration. Biochem J.
370:537–549. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang J, Zhang F and Niu R: Functions of
Shp2 in cancer. J Cell Mol Med. 19:2075–2083. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Labbé DP, Hardy S and Tremblay ML: Protein
tyrosine phosphatases in cancer. Friends and foes! Prog Mol Biol
Transl Sci. 106:253–306. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang WQ, Lin Q, Zhuang X, Cai LL, Ruan
RS, Lu ZX and Tzeng CM: Structure, function, and pathogenesis of
SHP2 in developmental disorders and tumorigenesis. Curr Cancer Drug
Targets. 14:567–588. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chan G, Kalaitzidis D and Neel BG: The
tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis
Rev. 27:179–192. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Grossmann KS, Rosário M, Birchmeier C and
Birchmeier W: The tyrosine phosphatase Shp2 in development and
cancer. Adv Cancer Res. 106:53–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Roubelakis MG, Martin-Rendon E, Tsaknakis
G, Stavropoulos A and Watt SM: The murine ortholog of the SHP-2
binding molecule, PZR accelerates cell migration on fibronectin and
is expressed in early embryo formation. J Cell Biochem.
102:955–969. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Seda Eminaga and Anton M: Bennett: Noonan
syndrome-associated SHP-2/Ptpn11 mutants enhance SIRPα and PZR
tyrosyl phosphorylation and promote adhesion-mediated ERK
activation. J Biol Chem. 283:15328–15338. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kusano K, Thomas TN and Fujiwara K:
Phosphorylation and localization of protein-zero related (PZR) in
cultured endothelial cells. Endothelium. 15:127–136. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Jia D, Jing Y, Zhang Z, Liu L, Ding J,
Zhao F, Ge C, Wang Q, Chen T, Yao M, et al: Amplification of
MPZL1/PZR promotes tumor cell migration through Src-mediated
phosphorylation of cortactin in hepatocellular carcinoma. Cell Res.
24:204–217. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu T, Liang L, Zhao X and Yin Y:
Structural and biochemical studies of the extracellular domain of
Myelin protein zero-like protein 1. Biochem Biophys Res Commun.
506:883–890. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ma MZ, Kong X, Weng MZ, Zhang MD, Qin YY,
Gong W, Zhang WJ and Quan ZW: Long non-coding RNA-LET is a positive
prognostic factor and exhibits tumor-suppressive activity in
gallbladder cancer. Mol Carcinog. 54:1397–1406. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Caplen NJ, Parrish S, Imani F, Fire A and
Morgan RA: Specific inhibition of gene expression by small
double-stranded RNAs in invertebrate and vertebrate systems. Proc
Natl Acad Sci USA. 98:9742–9747. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yoon HA, Noh MH, Kim BG, Han JS, Jang JS,
Choi SR, Jeong JS and Chun JH: Clinicopathological significance of
altered Notch signaling in extrahepatic cholangiocarcinoma and
gallbladder carcinoma. World J Gastroenterol. 17:4023–4030. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bao RF, Shu YJ, Hu YP, Wang XA, Zhang F,
Liang HB, Ye YY, Li HF, Xiang SS, Weng H, et al: miR-101 targeting
ZFX suppresses tumor proliferation and metastasis by regulating the
MAPK/Erk and Smad pathways in gallbladder carcinoma. Oncotarget.
7:22339–22354. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang P, Guo Z, Wu Y, Hu R, Du J, He X,
Jiao X and Zhu X: Histone deacetylase inhibitors inhibit the
proliferation of gallbladder carcinoma cells by suppressing
AKT/mTOR signaling. PLoS One. 10:e01361932015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xie F, Xu X, Xu A, Liu C, Liang F, Xue M
and Bai L: Aberrant activation of Sonic hedgehog signaling in
chronic cholecystitis and gallbladder carcinoma. Hum Pathol.
45:513–521. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hunter T: Tyrosine phosphorylation: Thirty
years and counting. Curr Opin Cell Biol. 21:140–146. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hunter T: Protein kinases and
phosphatases: The yin and yang of protein phosphorylation and
signaling. Cell. 80:225–236. 1995. View Article : Google Scholar : PubMed/NCBI
|
28
|
Krause DS and Van Etten RA: Tyrosine
kinases as targets for cancer therapy. N Engl J Med. 353:172–187.
2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhao S, Sedwick D and Wang Z: Genetic
alterations of protein tyrosine phosphatases in human cancers.
Oncogene. 34:3885–3894. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gaumann AK, Kiefer F, Alfer J, Lang SA,
Geissler EK and Breier G: Receptor tyrosine kinase inhibitors: Are
they Real Tumor Killers? Int J Cancer. 138:540–554. 2016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Tonks NK: Protein tyrosine
phosphatases-from housekeeping enzymes to master regulators of
signal transduction. FEBS J. 280:346–378. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Julien SG, Dubé N, Hardy S and Tremblay
ML: Inside the human cancer tyrosine phosphatome. Nat Rev Cancer.
11:35–49. 2011. View
Article : Google Scholar : PubMed/NCBI
|
33
|
He RJ, Yu ZH, Zhang RY and Zhang ZY:
Protein tyrosine phosphatases as potential therapeutic targets.
Acta Pharmacol Sin. 35:1227–1246. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z,
Liu C, Shen B, Wang XA, Wu W, et al: Whole-exome and targeted gene
sequencing of gallbladder carcinoma identifies recurrent mutations
in the ErbB pathway. Nat Genet. 46:872–876. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao R, Fu X, Teng L, Li Q and Zhao ZJ:
Blocking the function of tyrosine phosphatase SHP-2 by targeting
its Src homology 2 domains. J Biol Chem. 278:42893–42898. 2003.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Eminaga S and Bennett AM: Noonan
syndrome-associated SHP-2/Ptpn11 mutants enhance SIRPalpha and PZR
tyrosyl phosphorylation and promote adhesion-mediated ERK
activation. J Biol Chem. 283:15328–15338. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen L, Wang ZW, Zhu JW and Zhan X: Roles
of cortactin, an actin polymerization mediator, in cell
endocytosis. Acta Biochim Biophys Sin (Shanghai). 38:95–103. 2006.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Sung BH, Zhu X, Kaverina I and Weaver AM:
Cortactin controls cell motility and lamellipodial dynamics by
regulating ECM secretion. Curr Biol. 21:1460–1469. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Eckert MA, Lwin TM, Chang AT, Kim J, Danis
E, Ohno-Machado L and Yang J: Twist1-induced invadopodia formation
promotes tumor metastasis. Cancer Cell. 19:372–386. 2011.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhao R, Guerrah A, Tang H and Zhao ZJ:
Cell surface glycoprotein PZR is a major mediator of concanavalin
A-induced cell signaling. J Biol Chem. 277:7882–7888. 2002.
View Article : Google Scholar : PubMed/NCBI
|