1
|
Solomon CG: Reducing cardiovascular risk
in type 2 diabetes. N Engl J Med. 348:457–459. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chatterjee S, Khunti K and Davies MJ: Type
2 diabetes. Lancet. 389:2239–2251. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Paneni F, Beckman JA, Creager MA and
Cosentino F: Diabetes and vascular disease: Pathophysiology,
clinical consequences, and medical therapy: Part I. Eur Heart J.
34:2436–2443. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Garber AJ: Diabetes and vascular disease.
N Engl J Med. 2:1–5. 1990.
|
5
|
Murea M, Ma L and Freedman BI: Genetic and
environmental factors associated with type 2 diabetes and diabetic
vascular complications. Rev Diabet Stud. 9:6–22. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Martinon F, Burns K and Tschopp J: The
inflammasome: A molecular platform triggering activation of
inflammatory caspases and processing of proIL-beta. Mol Cell.
10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hink U, Tsilimingas N, Wendt M and Münzel
DT: Mechanisms underlying endothelial dysfunction in diabetes
mellitus: Therapeutic implications. Treat Endocrinol. 2:293–304.
2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Peng H, Hong S, Li P, Li J, Zhou X and
Zhang L: High glucose concentration increases the MAPK and
TGF-beta-2 expression in cultured P38 human umbilical vein
endothelial cells. Basic & Clinical Medicine. 27:pp. 169–173.
2007, http://en.cnki.com.cn/Article_en/CJFDTOTAL-JCYL200702010.htm
|
9
|
Takaishi H, Taniguchi T, Takahashi A,
Ishikawa Y and Yokoyama M: High glucose accelerates MCP-1
production via p38 MAPK in vascular endothelial cells. Biochem
Biophys Res Commun. 305:122–128. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Barr EL, Zimmet PZ, Welborn TA, Jolley D,
Magliano DJ, Dunstan DW, Cameron AJ, Dwyer T, Taylor HR, Tonkin AM,
et al: Risk of cardiovascular and all-cause mortality in
individuals with diabetes mellitus, impaired fasting glucose, and
impaired glucose tolerance: The Australian Diabetes, Obesity, and
Lifestyle Study (AusDiab). Circulation. 116:151–157. 2007.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kisseleva T, Bhattacharya S, Braunstein J
and Schindler CW: Signaling through the JAK/STAT pathway, recent
advances and future challenges. Gene. 285:1–24. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rawlings JS, Rosler KM and Harrison DA:
The JAK/STAT signaling pathway. J Cell Sci. 117:1281–1283. 2004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Manea SA, Manea A and Heltianu C:
Inhibition of JAK/STAT signaling pathway prevents
high-glucose-induced increase in endothelin-1 synthesis in human
endothelial cells. Cell Tissue Res. 340:71–79. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Marrero MB, Banes-Berceli AK, Stern DM and
Eaton DC: Role of the JAK/STAT signaling pathway in diabetic
nephropathy. Am J Physiol Renal Physiol. 290:F762–F768. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Godefroit P, Hai S, Yu T and Lauters P:
New hadrosaurid dinosaurs from the uppermost Cretaceous of
northeastern China. Acta Palaeontol Polonica. 53:47–74. 2008.
View Article : Google Scholar
|
16
|
Tong Y and Hou H: Effects of Huangqi
Guizhi Wuwu Tang on diabetic peripheral neuropathy. J Altern
Complement Med. 12:506–509. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun T, Cao L, Ping NN, Wu Y, Liu DZ and
Cao YX: Formononetin upregulates nitric oxide synthase in arterial
endothelium through estrogen receptors and MAPK pathways. J Pharm
Pharmacol. 68:342–351. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu J, Ke X, Ma N, Wang W, Fu W, Zhang H,
Zhao M, Gao X, Hao X and Zhang Z: Formononetin, an active compound
of Astragalus membranaceus (Fisch) Bunge, inhibits
hypoxia-induced retinal neovascularization via the HIF-1α/VEGF
signaling pathway. Drug Des Dev Ther. 10:3071–3081. 2016.
View Article : Google Scholar
|
19
|
Wu JH, Li Q, Wu MY, Guo DJ, Chen HL, Chen
SL, Seto SW, Au AL, Poon CC, Leung GP, et al: Formononetin, an
isoflavone, relaxes rat isolated aorta through
endothelium-dependent and endothelium-independent pathways. J Nutr
Biochem. 21:613–620. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Cosentino F, Hishikawa K, Katusic ZS and
Lüscher TF: High glucose increases nitric oxide synthase expression
and superoxide anion generation in human aortic endothelial cells.
Circulation. 96:25–28. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dabelea D and Harrod CS: Role of
developmental overnutrition in pediatric obesity and type 2
diabetes. Nutr Rev. 71 (Suppl 1):S62–S67. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wiernsperger NF and Bouskela E:
Microcirculation in insulin resistance and diabetes: More than just
a complication. Diabet Metab. 29:6S77–6S87. 2003. View Article : Google Scholar
|
24
|
Ndisang JF, Rastogi S and Vannacci A:
Insulin resistance, type 1 and type 2 diabetes, and related
complications 2015. J Diabetes Metab. 2015:2341352015.
|
25
|
Palmer SC, Mavridis D, Nicolucci A,
Johnson DW, Tonelli M, Craig JC, Maggo J, Gray V, De Berardis G,
Ruospo M, et al: Comparison of clinical outcomes and adverse events
associated with glucose-lowering drugs in patients with type 2
diabetes: A meta-analysis. JAMA. 316:313–324. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jermendy G: Can type 2 diabetes mellitus
be considered preventable? Diabetes Res Clin Pract. 68 (Suppl
1):S73–S81. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee H, Lee D, Kang KS, Song JH and Choi
YK: Inhibition of intracellular ROS accumulation by formononetin
attenuates cisplatin-mediated apoptosis in LLC-PK1 cells. Int J Mol
Sci. 19:2018.
|
28
|
Wang Y, Zhu Y, Gao L, Yin H, Xie Z, Wang
D, Zhu Z and Han X: Formononetin attenuates IL-1β-induced apoptosis
and NF-κB activation in INS-1 cells. Molecules. 17:10052–10064.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Qiu G, Tian W, Huan M, Chen J and Fu H:
Formononetin exhibits anti-hyperglycemic activity in
alloxan-induced type 1 diabetic mice. Exp Biol Med (Maywood).
242:223–230. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Vargha R, Bender T, Riesenhuber A,
Endemann M, Kratochwill K and Aufricht C: Effects of
epithelial-to-mesenchymal transition on acute stress response in
human peritoneal mesothelial cells. Nephrol Dial Transplant.
23:3494–3500. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schindler C, Levy DE and Decker T:
JAK-STAT signaling: From interferons to cytokines. J Biol Chem.
282:20059–20063. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liao JQ, Lin JQ, Zhang WJ, Xu L, Zhi XM,
Lin K and Wu W: Role of JAK/STAT signaling pathway in high
glucose-induced damage in human umbilical vein endothelial cells.
Chin J Pathophysiol. 32:392–397. 2016.(In Chinese).
|
33
|
Budihardjo I: Biochemical pathways of
caspase activation during apoptosis. Annu Rev Cell Dev Biol. 15(1):
269–290. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Griendling KK, Sorescu D and Ushio-Fukai
M: NAD(P)H oxidase: Role in cardiovascular biology and disease.
Circ Res. 86:494–501. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mehta JL and Li D: Identification,
regulation and function of a novel lectin-like oxidized low-density
lipoprotein receptor. J Am Coll Cardiol. 39:1429–1435. 2002.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Dinarello CA: Biologic basis for
interleukin-1 in disease. Blood. 87:2095–2147. 1996.PubMed/NCBI
|
37
|
Merhi-Soussi F, Kwak BR, Magne D,
Chadjichristos C, Berti M, Pelli G, James RW, Mach F and Gabay C:
Interleukin-1 plays a major role in vascular inflammation and
atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc
Res. 66:583–593. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang L, Froio RM, Sciuto TE, Dvorak AM,
Alon R and Luscinskas FW: ICAM-1 regulates neutrophil adhesion and
transcellular migration of TNF-alpha-activated vascular endothelium
under flow. Blood. 106:584–592. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Clapp BR, Hingorani AD, Kharbanda RK,
Mohamed-Ali V, Stephens JW, Vallance P and MacAllister RJ:
Inflammation-induced endothelial dysfunction involves reduced
nitric oxide bioavailability and increased oxidant stress.
Cardiovasc Res. 64:172–178. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Förstermann U and Sessa WC: Nitric oxide
synthases: Regulation and function. Eur Heart J. 33:829–837,
837a-837d. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang X, Shaw S, Amiri F, Eaton DC and
Marrero MB: Inhibition of the JAK/STAT signaling pathway prevents
the high glucose-induced increase in TGF-beta and fibronectin
synthesis in mesangial cells. Diabetes. 51:3505–3509. 2002.
View Article : Google Scholar : PubMed/NCBI
|