1
|
Michaelis J: Osteosarcoma. Lancet.
1:11741988. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kansara M, Teng MW, Smyth MJ and Thomas
DM: Translation biology of osteosarcoma. Nat Rev Cancer.
14:722–735. 2014. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Gianferante DM, Mirabello L and Savage SA:
Germline and somatic genetics of osteosarcoma-connecting aetiology,
biology and therapy. Nat Rev Endocrinol. 13:480–491. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Li ZX, Wang RY and Tang JC: Sodium
valproate enhance γδ T cells killing osteosarcoma. Chin J Exp Surg.
33:154–157. 2016.
|
5
|
Perron B, Lewit-Bentley A, Geny B and
Russo-Marie F: Can enzymatic activity, or otherwise, be inferred
from structural studies of annexin III? J Biol Chem.
272:11321–11326. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gerke V, Creutz CE and Moss SE: Annexins:
Linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell
Biol. 6:449–461. 2005. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Moss SE and Morgan RO: The annexins.
Genome Biol. 5:2192004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gerke V and Moss SE: Annexins: From
structure to function. Physiol Rev. 82:331–371. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hamelin-Peyron C, Vlaeminck-Guillem V,
Haidous H, Schwall GP, Poznanovic S, Gorius-Gallet E, Michles S,
Larue A, Guillotte M, Ruffion A, et al: Prostate cancer biomarker
annexin A3 detected in urines obtained following digital rectal
examination presents antigenic variablility. Clin Biochem.
47:901–908. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wu N, Liu S, Guo C, Hou Z and Sun MZ: The
role of annexin A3 playing in cancers. Clin Transl Oncol.
15:106–110. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zeidan B, Jackson TR, Larkin SE, Cutress
RI, Coulton GR, Ashton-Key M, Murray N, Packham G, Gorgoulis V,
Garbis SD and Townsend PA: Annexin A3 is a mammary marker and
potential neoplastic breast cell therapeutic target. Oncotarget.
6:21421–21427. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tong M, Fung TM, Luk ST, Ng KY, Lee TK,
Lin CH, Yam JW, Chan KW, Ng F, Zheng BJ, et al: ANXA3/JNK signaling
promotes self-renewal and tumor growth, and its blockade provides a
therapeutic target for hepatocellular carcinoma. Stem Cell Reports.
5:45–59. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu YF, Xiao ZQ, Li MX, Zhang PF, Li C, Li
F, Chen YH, Yi H, Yao HX and Chen ZC: Quantitative promote analysis
reveals annexin A3 as a novel biomarker in lung adenocarcinoma. J
Pathol. 217:54–64. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu YF, Chen YH, Li MY, Zhang PF, Li GQ,
Xiao ZQ and Chen ZC: Quantitative proteomic analysis identifying
three annexins as lymph node metastasis-related proteins in lung
adenocarcinoma. Med Oncol. 29:174–184. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pan QZ, Pan K, Weng DS, Zhao JJ, Zhang XF,
Wang DD, Lv L, Jiang SS, Zheng HX and Xia JC: Annexin A3 promotes
tumorigenesis and resistance to chemotherapy in hepatocellular
carcinoma. Mol Carcinog. 54:598–607. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yan X, Yin J, Yao H, Mao N, Yang Y and Pan
L: Increased expression of annexin A3 is a mechanism of platinum
resistance in ovarian cancer. Cancer Res. 70:1616–1624. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tong SW, Yang YX, Hu HD, An X, Ye F, Hu P,
Ren H, Li SL and Zhang DZ: Proteomic investigation of
5-flourouracil resistance in a human hepatocellular carcinoma cell
line. J cell Biochem. 113:1671–1680. 2012.PubMed/NCBI
|
18
|
Pénzváltó Z, Tegze B, Szász AM,
Sztupinszki Z, Likó I, Szendrői A, Schäfer R and Győrffy B:
Identifying resistance mechanisms against five tyrosine kinase
inhibitors targeting the ERBB/RAS pathway in 45 cancer cell lines.
PLoS One. 8:e595032013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li ZX: Potential of human γδ T cells for
immunotherapy of osteosarcoma. Mol Biol Rep. 40:427–437. 2013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Mussunoor S and Murray GI: The role of
annexins in tumor development and progression. J Pathol.
216:131–140. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shao P, Qu WK, Wang CY, Tian Y, Ye ML, Sun
DG, Sui JD, Wang LM, Fan R and Gao ZM: MicroRNA-205-5p regulates
the chemotherapeutic resistance of hepatocellular carcinoma cells
by targeting PTEN/JNK/ANXA3 pathway. Am J Transl Res. 9:4300–4307.
2017.PubMed/NCBI
|
23
|
Yang YM, Kim SY and Seki E: Inflammation
and liver cancer: Molecular mechanisms and therapeutic targets.
Semin Liver Dis. 39:26–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li Z, Zhang L, Gao M, Han M, Liu K, Zhang
Z, Gong Z, Xing L, Shi X, Lu K and Gao H: Endoplasmic reticulum
stress triggers xanthoangelol-induced protective autophagy via
activation of JNK/c-Jun Axis in hepatocellular carcinoma. J Exp
Clin Cancer Res. 38:82019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim JB, Lee S, Kim HR, Park SY, Lee M,
Yoon JH and Kim YJ: Transforming growth factor-β decreases side
population cells in hepatocellular carcinoma in vitro. Oncol
Lett. 15:8723–8728. 2018.PubMed/NCBI
|
26
|
Jin Y, Mao J, Wang H, Hou Z, Ma W, Zhang
J, Wang B, Huang Y, Zang S, Tang J and Li L: Enhanced tumorigenesis
and lymphatic metastasis of CD133+ hepatocarcinoma ascites
syngeneic cell lines mediated by JNK signaling pathway in vitro and
in vivo. Biomed Pharmacother. 67:337–345. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hagiwara S, Kudo M, Nagai T, Inoue T,
Ueshima K, Nishida N, Watanabe T and Sakurai T: Activation of JNK
and high expression level of CD133 predict a poor response to
sorafenib in hepatocellular carcinoma. Br J Cancer. 106:1997–2003.
2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pan Q, Pan K, Wang QJ, Weng DS, Zhao JJ,
Zheng HX, Zhang XF, Jiang SS, Lv L, Tang Y, et al: Annexin A3 as a
potential target for immunotherapy of liver cancer stem-like cells.
Stem Cells. 33:354–366. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou T, Li Y, Yang L, Yang L, Tang T,
Zhang L and Shi J: Annexin A3 as a prognostic biomarker for breast
cancer: A retrospective study. Biomed Res Int. 2017:26036852017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zeng C, Ke Z, Song Y, Yao Y, Hu X, Zhang
M, Li H and Yin J: Annexin A3 is associated with a poor prognosis
in breast cancer and participates in the modulation of apoptosis in
vitro by affecting the Bcl-2/Bax balance. Exp Mol Pathol. 95:23–31.
2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu YF, Xiao ZQ, Li MX, Li MY, Zhang PF,
Li C, Li F, Chen YH, Yi H, Yao HX and Chen ZC: Quantitative
proteome analysis reveals annexin A3 as a novel biomarker in lung
adenocarcinoma. J Pathol. 217:54–64. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li J, Zhou T, Liu L, Ju YC, Chen YT, Tan
ZR and Wang J: The regulatory role of Annexin 3 in nude mouse
bearing a subcutaneous xenograft of MDA-MB-231 human breast
carcinoma. Pathol Res Pract. 214:1719–1725. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jeun M, Park S, Kim Y, Choi J, Song SH,
Jeong IG, Kim CS and Lee KH: Self-Normalized detection of ANXA3
from untreated urine of prostate cancer patients without digital
rectal examination. Adv Healthc Mater. 62017.
|
34
|
Liu YF, Liu QQ, Zhang YH and Qiu JH:
Annexin A3 knockdown suppresses lung adenocarcinoma. Anal Cell
Pathol (Amst). 2016:41314032016.PubMed/NCBI
|
35
|
Zhou T, Li Y, Yang L, Liu L, Ju Y and Li
C: Silencing of ANXA3 expression by RNA interference inhibits the
proliferation and invasion of breast cancer cells. Oncol Rep.
37:388–398. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li ZX, Wang RY and Tang JC: Type I
IFN-mediated enhancement of anti-osteosarcoma cytotoxicity of human
γδ T cells. Chin J Immun. 11:1533–1535, 1542. 2014.
|
37
|
Li Z, Zhang J, Tang J and Wang R:
Celastrol increases osteosarcoma cell lysis by γδ T cells through
up-regulation of death receptors. Oncotarget. 7:84388–84397.
2016.PubMed/NCBI
|
38
|
Li Z, Xu Q, Peng H, Cheng R, Sun Z and Ye
Z: IFN-γ enhances HOS and U2OS cell lines susceptibility to γδ T
cell-mediated killing through the Fas/Fas ligand pathway. Int
Immunopharmacol. 11:496–503. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Z, Peng H, Xu Q and Ye Z: Sensitization
of human osteosarcoma cells to Vγ9Vδ2 T-cell-mediated cytotoxicity
by zoledronate. J Orthop Res. 30:824–830. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li ZX, Zhang JZ, Wang ST, Wang RY and Tang
JC: Celastrol increases osteosarcoma cells line HOS lysis by γδ T
cells through TRAIL way. Chin J Immun. 32:1777–1780. 2016.
|