1
|
Bazan NG, Rodriguez-deTurco EB and Allan
G: Mediators of injury in neurotrauma: Intracellular signal
transduction and gene expression. J Neurotrauma. 12:791–814. 1995.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Crowe MJ, Bresnahan JC, Shuman SL, Masters
JN and Beattie MS: Apoptosis and delayed degeneration after spinal
cord injury in rats and monkeys. Nat Med. 3:73–76. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dusart I and Schwab ME: Secondary cell
death and the inflammatory reaction after dorsal hemisection of the
rat spinal cord. Eur J Neurosci. 6:712–724. 1994. View Article : Google Scholar : PubMed/NCBI
|
4
|
Faden AI: Pharmacological treatment of
central nervous system trauma. Pharmacol Toxicol. 78:12–17. 1996.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu D and McAdoo DJ: An experimental model
combining microdialysis with electrophysiology, histology and
neurochemistry for exploring mechanisms of secondary damage in
spinal cord injury: Effect of potassium. J Neurotrauma. 10:349–362.
1993. View Article : Google Scholar : PubMed/NCBI
|
6
|
Quigley HA: Neuronal death in glaucoma.
Prog Retin Eye Res. 18:39–57. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Quigley HA, Addicks EM, Green WR and
Maumenee AE: Optic nerve damage in human glaucoma. II. The site of
injury and susceptibility to damage. Arch Ophthalmol. 99:635–649.
1981. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yoles E and Schwartz M: Degeneration of
spared axons following partial white matter lesion: Implications
for optic nerve neuropathies. Exp Neurol. 153:1–7. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yoles E and Schwartz M: Potential
neuroprotective therapy for glaucomatous optic neuropathy. Surv
Ophthalmol. 42:367–372. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Levkovitch-Verbin H, Quigley HA,
Kerrigan-Baumrind LA, D'Anna SA, Kerrigan D and Pease ME: Optic
nerve transection in monkeys may result in secondary degeneration
of retinal ganglion cells. Invest Ophthalmol Vis Sci. 42:975–982.
2001.PubMed/NCBI
|
11
|
Levkovitch-Verbin H, Quigley HA, Martin
KR, Zack DJ, Pease ME and Valenta DF: A model to study differences
between primary and secondary degeneration of retinal ganglion
cells in rats by partial optic nerve transection. Invest Ophthalmol
Vis Sci. 44:3388–3393. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Davis BM, Guo L, Brenton J, Langley L,
Normando EM and Cordeiro MF: Automatic quantitative analysis of
experimental primary and secondary retinal neurodegeneration:
Implications for optic neuropathies. Cell Death Discov.
2:160312016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fitzgerald M, Bartlett CA, Harvey AR and
Dunlop SA: Early events of secondary degeneration after partial
optic nerve transection: An immunohistochemical study. J
Neurotrauma. 27:439–452. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Levkovitch-Verbin H, Dardik R, Vander S
and Melamed S: Mechanism of retinal ganglion cells death in
secondary degeneration of the optic nerve. Exp Eye Res. 91:127–134.
2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li HY, Ruan YW, Ren CR, Cui Q and So KF:
Mechanisms of secondary degeneration after partial optic nerve
transection. Neural Regen Res. 9:565–574. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Levkovitch-Verbin H, Spierer O, Vander S
and Dardik R: Similarities and differences between primary and
secondary degeneration of the optic nerve and the effect of
minocycline. Graefes Arch Clin Exp Ophthalmol. 249:849–857. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Li HY, Hong X, Huang M and So KF:
Voluntary running delays primary degeneration in rat retinas after
partial optic nerve transection. Neural Regen Res. 14:728–734.
2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
O'Hare Doig RL, Chiha W, Giacci MK, Yates
NJ, Bartlett CA, Smith NM, Hodgetts SI, Harvey AR and Fitzgerald M:
Specific ion channels contribute to key elements of pathology
during secondary degeneration following neurotrauma. BMC Neurosci.
18:622017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu Y, Lam CS, Tse DY, To CH, Liu Q,
McFadden SA, Chun RK, Li KK, Bian J and Lam C: Early quantitative
profiling of differential retinal protein expression in
lens-induced myopia in guinea pig using fluorescence difference
two-dimensional gel electrophoresis. Mol Med Rep. 17:5571–5580.
2018.PubMed/NCBI
|
20
|
Kwong JM, Caprioli J and Piri N: RNA
binding protein with multiple splicing: A new marker for retinal
ganglion cells. Invest Ophthalmol Vis Sci. 51:1052–1058. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kwong JM, Quan A, Kyung H, Piri N and
Caprioli J: Quantitative analysis of retinal ganglion cell survival
with Rbpms immunolabeling in animal models of optic neuropathies.
Invest Ophthalmol Vis Sci. 52:9694–9702. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ishii Y, Kwong JM and Caprioli J: Retinal
ganglion cell protection with geranylgeranylacetone, a heat shock
protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis
Sci. 44:1982–1992. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jia L, Cepurna WO, Johnson EC and Morrison
JC: Patterns of intraocular pressure elevation after aqueous humor
outflow obstruction in rats. Invest Ophthalmol Vis Sci.
41:1380–1385. 2000.PubMed/NCBI
|
24
|
Lam TC, Li KK, Lo SC, Guggenheim JA and To
CH: Application of fluorescence difference gel electrophoresis
technology in searching for protein biomarkers in chick myopia. J
Proteome Res. 6:4135–4149. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lam TC, Li KK, Lo SC, Guggenheim JA and To
CH: A chick retinal proteome database and differential retinal
protein expressions during early ocular development. J Proteome
Res. 5:771–784. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Piri N, Song M, Kwong JM and Caprioli J:
Modulation of alpha and beta crystallin expression in rat retinas
with ocular hypertension-induced ganglion cell degeneration. Brain
Res. 1141:1–9. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Munemasa Y, Kwong JM, Caprioli J and Piri
N: The role of alphaA- and alphaB-crystallins in the survival of
retinal ganglion cells after optic nerve axotomy. Invest Ophthalmol
Vis Sci. 50:3869–3875. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Piri N, Kwong JM and Caprioli J:
Crystallins in retinal ganglion cell survival and regeneration. Mol
Neurobiol. 48:819–828. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Piri N, Kwong JM, Gu L and Caprioli J:
Heat shock proteins in the retina: Focus on HSP70 and alpha
crystallins in ganglion cell survival. Prog Retin Eye Res.
52:22–46. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sharma TP, Liu Y, Wordinger RJ, Pang IH
and Clark AF: Neuritin 1 promotes retinal ganglion cell survival
and axonal regeneration following optic nerve crush. Cell Death
Dis. 6:e16612015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang W, Chan A, Qin Y, Kwong JMK, Caprioli
J, Levinson R, Chen L and Gordon LK: Programmed cell death-1 is
expressed in large retinal ganglion cells and is upregulated after
optic nerve crush. Exp Eye Res. 140:1–9. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Obara EA, Hannibal J, Heegaard S and
Fahrenkrug J: Loss of Melanopsin-expressing retinal ganglion cells
in severely staged glaucoma patients. Invest Ophthalmol Vis Sci.
57:4661–4667. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Joachim SC, Renner M, Reinhard J, Theiss
C, May C, Lohmann S, Reinehr S, Stute G, Faissner A, Marcus K, et
al: Protective effects on the retina after ranibizumab treatment in
an ischemia model. PLoS One. 12:e01824072017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Clarke DB, Bray GM and Aguayo AJ:
Prolonged administration of NT-4/5 fails to rescue most axotomized
retinal ganglion cells in adult rats. Vision Res. 38:1517–1524.
1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fitzgerald M, Payne SC, Bartlett CA, Evill
L, Harvey AR and Dunlop SA: Secondary retinal ganglion cell death
and the neuroprotective effects of the calcium channel blocker
lomerizine. Invest Ophthalmol Vis Sci. 50:5456–5462. 2009.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Chu PH, Li HY, Chin MP, So KF and Chan HH:
Effect of lycium barbarum (wolfberry) polysaccharides on preserving
retinal function after partial optic nerve transection. PLoS One.
8:e813392013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li HY, Ruan YW, Kau PW, Chiu K, Chang RC,
Chan HH and So KF: Effect of Lycium barbarum (Wolfberry) on
alleviating axonal degeneration after partial optic nerve
transection. Cell Transplant. 24:403–417. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li H, Liang Y, Chiu K, Yuan Q, Lin B,
Chang RC and So KF: Lycium barbarum (wolfberry) reduces secondary
degeneration and oxidative stress, and inhibits JNK pathway in
retina after partial optic nerve transection. PLoS One.
8:e688812013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Payne SC, Bartlett CA, Harvey AR, Dunlop
SA and Fitzgerald M: Myelin sheath decompaction, axon swelling, and
functional loss during chronic secondary degeneration in rat optic
nerve. Invest Ophthalmol Vis Sci. 53:6093–6101. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Payne SC, Bartlett CA, Savigni DL, Harvey
AR, Dunlop SA and Fitzgerald M: Early proliferation does not
prevent the loss of oligodendrocyte progenitor cells during the
chronic phase of secondary degeneration in a CNS white matter
tract. PLoS One. 8:e657102013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chiha W, LeVaillant CJ, Bartlett CA,
Hewitt AW, Melton PE, Fitzgerald M and Harvey AR: Retinal genes are
differentially expressed in areas of primary versus secondary
degeneration following partial optic nerve injury. PLoS One.
13:e01923482018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Carter-Dawson L, Zhang Y, Harwerth RS,
Rojas R, Dash P, Zhao XC, WoldeMussie E, Ruiz G, Chuang A, Dubinsky
WP and Redell JB: Elevated albumin in retinas of monkeys with
experimental glaucoma. Invest Ophthalmol Vis Sci. 51:952–959. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Ying X, Zhang J, Wang Y, Wu N, Wang Y and
Yew DT: Alpha-crystallin protected axons from optic nerve
degeneration after crushing in rats. J Mol Neurosci. 35:253–258.
2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wu N, Yu J, Chen S, Xu J, Ying X, Ye M, Li
Y and Wang Y: α-Crystallin protects RGC survival and inhibits
microglial activation after optic nerve crush. Life Sci. 94:17–23.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Böhm MR, Prokosch V, Brückner M, Pfrommer
S, Melkonyan H and Thanos S: βB2-crystallin promotes axonal
regeneration in the injured optic nerve in adult rats. Cell
Transplant. 24:1829–1844. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shao WY, Liu X, Gu XL, Ying X, Wu N, Xu HW
and Wang Y: Promotion of axon regeneration and inhibition of
astrocyte activation by alpha A-crystallin on crushed optic nerve.
Int J Ophthalmol. 9:955–966. 2016.PubMed/NCBI
|
47
|
Anders F, Teister J, Liu A, Funke S, Grus
FH, Thanos S, von Pein HD, Pfeiffer N and Prokosch V: Intravitreal
injection of β-crystallin B2 improves retinal ganglion cell
survival in an experimental animal model of glaucoma. PLoS One.
12:e01754512017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang YH, Yin ZQ and Wang Y: Synergistic
effect of olfactory ensheathing cells and alpha-crystallin on
restoration of adult rat optic nerve injury. Neurosci Lett.
638:167–174. 2017. View Article : Google Scholar : PubMed/NCBI
|