1
|
Alzheimer's Disease International, .
Dementia statistics. 2013.
|
2
|
Selkoe DJ and Hardy J: The amyloid
hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med.
8:595–608. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sala Frigerio C and De Strooper B:
Alzheimer's disease mechanisms and emerging roads to novel
therapeutics. Annu Rev Neurosci. 39:57–79. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yamin G, Ono K, Inayathullah M and Teplow
DB: Amyloid beta-protein assembly as a therapeutic target of
Alzheimer's disease. Curr Pharm Des. 14:3231–3246. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Marin MA, Ziburkus J, Jankowsky J and
Rasband MN: Amyloid-β plaques disrupt axon initial segments. Exp
Neurol. 281:93–98. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thangavel R, Bhagavan SM, Ramaswamy SB,
Surpur S, Govindarajan R, Kempuraj D, Zaheer S, Raikwar S, Ahmed
ME, Selvakumar GP, et al: Co-expression of glia maturation factor
and apolipoprotein E4 in Alzheimer's disease brain. J Alzheimers
Dis. 61:553–560. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Qiu Z, Crutcher KA, Hyman BT and Rebeck
GW: ApoE isoforms affect neuronal N-methyl-D-aspartate calcium
responses and toxicity via receptor-mediated processes.
Neuroscience. 122:291–303. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bour A, Grootendorst J, Vogel E, Kelche C,
Dodart JC, Bales K, Moreau PH, Sullivan PM and Mathis C:
Middle-aged human apoE4 targeted-replacement mice show retention
deficits on a wide range of spatial memory tasks. Behav Brain Res.
193:174–182. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yin JX, Turner GH, Lin HJ, Coons SW and
Shi J: Deficits in spatial learning and memory is associated with
hippocampal volume loss in aged apolipoprotein E4 mice. J
Alzheimers Dis. 27:89–98. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen Y, Durakoglugil MS, Xian X and Herz
J: ApoE4 reduces glutamate receptor function and synaptic
plasticity by selectively impairing ApoE receptor recycling. Proc
Natl Acad Sci USA. 107:12011–12016. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
van Bergen JM, Li X, Hua J, Schreiner SJ,
Steininger SC, Quevenco FC, Wyss M, Gietl AF, Treyer V, Leh SE, et
al: Colocalization of cerebral iron with amyloid beta in mild
cognitive impairment. Sci Rep. 6:355142016. View Article : Google Scholar : PubMed/NCBI
|
12
|
LaFerla FM, Green KN and Oddo S:
Intracellular amyloid-beta in Alzheimer's disease. Nat Rev
Neurosci. 8:499–509. 2007. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Kuhlmann N, Wroblowski S, Knyphausen P, de
Boor S, Brenig J, Zienert AY, Meyer-Teschendorf K, Praefcke GJ,
Nolte H, Krüger M, et al: Structural and mechanistic insights into
the regulation of the fundamental Rho regulator RhoGDIα by lysine
acetylation. J Biol Chem. 291:5484–5499. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fukada M, Hanai A, Nakayama A, Suzuki T,
Miyata N, Rodriguiz RM, Wetsel WC, Yao TP and Kawaguchi Y: Loss of
deacetylation activity of Hdac6 affects emotional behavior in mice.
PLoS One. 7:e309242012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen S, Owens GC, Makarenkova H and
Edelman DB: HDAC6 regulates mitochondrial transport in hippocampal
neurons. PLoS One. 5:e108482010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Choi H, Kim HJ, Kin J, Kim S, Yang J, Lee
W, Park Y, Hyeon SJ, Lee DA, Ryu H, et al: Increased acetylation of
Peroxiredoxin1 by HDAC6 inhibition leads to recovery of Aβ-induced
impaired axonal transport. Mol Neurodegener. 12:232017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Odagiri S, Tanji K, Mori F, Miki Y, Kakita
A, Takahashi H and Wakabayashi K: Brain expression level and
activity of HDAC6 protein in neurodegenerative dementia. Biochem
Biophys Res Commun. 430:394–399. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang L, Sheng S and Qin C: The role of
HDAC6 in Alzheimer's disease. J Alzheimers Dis. 33:283–295. 2013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Majid T, Griffin D, Criss Z, Jarpe M and
Pautler RG: Pharmocologic treatment with histone deacetylase 6
inhibitor (ACY-738) recovers Alzheimer's disease phenotype in
amyloid precursor protein/presenilin 1 (APP/PS1) mice. Alzheimers
Dement (N Y). 1:170–181. 2015.PubMed/NCBI
|
20
|
National Research Council (US) Institute
for Laboratory Animal Research, . Guide for the Care and Use of
Laboratory AnimalsNational Academies Press; Washington, DC:
1996
|
21
|
Paxinos G and Watson C: The Rat Brain in
Stereotaxic Coordinates6th. Hard cover edition. Academic Press; San
Diego, CA: 2007
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiang S, Nandy P, Wang W, Ma X, Hisa J,
Wang C, Wang Z, Niu M, Siedlak S, Torres S, et al: Mfn2 ablation
causes an oxidative stress response and eventual neuronal death in
the hippocampus and cortex. Mol Neurodegener. 13:52018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Stutzmann GE: The pathogenesis of
Alzheimers disease is it a lifelong ‘calciumopathy’?
Neuroscientist. 13:546–559. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Neve RL, Harris P, Kosik KS, Kurnit DM and
Donlon TA: Identification of cDNA clones for the human
microtubule-associated protein, tau, and chromosomal location of
the genes for tau and microtubule-associated protein 2. Mol Brain
Res. 1:271–280. 1986. View Article : Google Scholar
|
26
|
Alonso A, Zaidi T, Novak M, Grundke Iqbal
I and Iqbal K: Hyperphosphorylation induces self-assembly of tau
into tangles of paired helical filaments/straight filaments. Proc
Natl Acad Sci USA. 98:6923–6928. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lasagna-Reeves CA, Castillo-Carranza DL,
Guerrero-Muoz MJ, Jackson GR and Kayed R: Preparation and
characterization of neurotoxic tau oligomers. Biochemistry.
49:10039–10041. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ding H, Dolan PJ and Johnson GV: Histone
deacetylase 6 interacts with the microtubule-associated protein
tau. J Neurochem. 106:2119–2130. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Noack M, Leyk J and Richter-Landsberg C:
HDAC6 inhibition results in tau acetylation and modulates tau
phosphorylation and degradation in oligodendrocytes. Glia.
62:535–547. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xiong Y, Zhao K, Wu J, Xu Z, Jin S and
Zhang YQ: HDAC6 mutations rescue human tau-induced microtubule
defects in Drosophila. Proc Natl Acad Sci USA. 110:4604–4609. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Orta-Salazar E, Cuellar-Lemus CA,
Díaz-Cintra S and Feria-Velasco AI: Cholinergic markers in the
cortex and hippocampus of some animal species and their correlation
to Alzheimer's disease. Neurologia. 29:497–503. 2014.(In English,
Spanish). View Article : Google Scholar : PubMed/NCBI
|
32
|
Li Q, Chen M, Liu H, Yang L and Yang G:
Expression of APP, BACE1, AChE and ChAT in an AD model in rats and
the effect of donepezil hydrochloride treatment. Mol Med Rep.
6:1450–1454. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Espallergues J, Teegarden SL, Veerakumar
A, Boulden J, Challis C, Jochems J, Chan M, Petersen T, Deneris E,
Matthias P, et al: HDAC6 regulates glucocorticoid receptor
signaling in serotonin pathways with critical impact on stress
resilience. J Neurosci. 32:4400–4416. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Selenica ML, Benner L, Housley SB, Manchec
B, Lee DC, Nash KR, Kalin J, Bergman JA, Kozikowski A, Gordon MN
and Morgan D: Histone deacetylase 6 inhibition improves memory and
reduces total tau levels in a mouse model of tau deposition.
Alzheimers Res Ther. 6:122014. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Simões-Pires C, Zwick V, Nurisso A,
Schenker E, Carrupt PA and Cuendet M: HDAC6 as a target for
neurodegenerative diseases: What makes it different from the other
HDACs? Mol Neurodegener. 8:72013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu M, He Y, Zhang J, Yang J and Qi J:
Co-injection of Aβ1-40 and ApoE4 impaired spatial memory and
hippocampal long-term potentiation in rats. Neurosci Lett.
648:47–52. 2017. View Article : Google Scholar : PubMed/NCBI
|