1
|
Dougados M and Baeten D:
Sphodyloarthritis. Lancet. 377:2127–2137. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Evans DM, Spencer CC, Pointon JJ, Su Z,
Harvey D, Kochan G, Oppermann U, Dilthey A, Pirinen M, Stone MA, et
al: Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis
implicates peptide handling in the mechanism for HLA-B27 in disease
susceptibility. Nat Genet. 43:761–767. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hou ZD, Xiao ZY, Gong Y, Zhang YP and Zeng
QY: Arylamine N-acetyltransferase polymorphisms in Han Chinese
patients with ankylosing spondylitis and their correlation to the
adverse drug reactions to sulfasalazine. BMC Pharmacol Toxicol.
15:64–80. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu Z, Zhang P and Dong J: Genetic
variants of STAT4 are associated with ankylosing spondylitis
susceptibility and severity in a Chinese Han population. Int J Clin
Exp Med. 7:5877–5881. 2014.PubMed/NCBI
|
5
|
Dean LE, Jones GT, MacDonald AG, Downham
C, Sturrock RD and Macfarlane GJ: Global prevalence of ankylosing
spondylitis. Rheumatology (Oxford). 53:650–657. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Haywood KL, Packham JC and Jordan KP:
Assessing fatigue in ankylosing spondylitis: The importance of
frequency and severity. Rheumatology. 53:552–556. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gan FY, Fei YY, Li MT, Wang Q, Xu D, Hou
Y, Zeng XF and Zhang FC: The characteristics of patients having
ankylosing spondylitis associated with Takayasu's arteritis. Clin
Rheumatol. 33:355–358. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li X, Liu F, Lin B, Luo H, Liu M, Wu J, Li
C, Li R, Zhang X, Zhou K and Ren D: miR-150 inhibits proliferation
and tumorigenicity via retarding G1/S phase transition in
nasopharyngeal carcinoma. Int J Oncol. 50:1097–1108. 2017.
View Article : Google Scholar :
|
9
|
Ro S, Park C, Young D, Sanders KM and Yan
W: Tissue-dependent paired expression of miRNAs. Nucleic Acids Res.
35:5944–5953. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mallory AC and Vaucheret H: MicroRNAs:
Something important between the genes. Curr Opin Plant Biol.
7:120–125. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Garzon R, Calin GA and Croce CM: MicroRNAs
in cancer. Annu Rev Med. 60:167–179. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gaur N, Karouzakis E, Gluck S, Bagdonas E,
Jüngel A, Michel BA, Gay RE, Gay S, Frank-Bertoncelj M and Neidhart
M: Micrornas interfere with DNA methylation in rheumatoid arthritis
synovial fibroblasts. RMD Open. 2:e0002992016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Freiesleben S, Hecker M, Zettl UK, Fuellen
G and Taher L: Analysis of microRNA and gene expression profiles in
multiple sclerosis: Integrating interaction data to uncover
regulatory mechanisms. Sci Rep. 6:345122016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lai NS, Yu HC, Chen HC, Yu CL, Huang HB
and Lu MC: Aberrant expression of microRNAs in T cells from
patients with ankylosing spondylitis contributes to the
immunopathogenesis. Clin Exp Immunol. 173:47–57. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jiang Y and Wang L: Role of histone
deacetylase 3 in ankylosing spondylitis via negative feedback loop
with microRNA-130a and enhancement of tumor necrosis factor-1α
expression in peripheral blood mononuclear cells. Mol Med Rep.
13:35–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shah N and Sukumar S: The Hox genes and
their roles in oncogenesis. Nat Rev Cancer. 10:361–371. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Han L, Liu D, Li Z, Tian N, Han Z, Wang G,
Fu Y, Guo Z, Zhu Z, Du C and Tian Y: HOXB1 Is a Tumor Suppressor
Gene Regulated by miR-3175 in Glioma. PLoS One. 10:e01423872015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the (-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Su JR, Kuai JH and Li YQ: Smoc2
potentiates proliferation of hepatocellular carcinoma cells via
promotion of cellcycle progression. World J Gastroenterol.
22:10053–10063. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang Y, Wang W, Liu ZY, Xie Y, Qian Y and
Cai XN: Overexpression of miR-130a-3p/301a-3p attenuates high
glucose-induced MPC5podocyte dysfunction through suppression of
TNF-α signaling. Exp Ther Med. 15:1021–1028. 2018.PubMed/NCBI
|
21
|
Appel H, Maier R, Bleil J, Hempfing A,
Loddenkemper C, Schlichting U, Syrbe U and Sieper J: In situ
analysis of interleukin-23-and interleukin-12-positive cells in the
spine of patients with ankylosing spondylitis. Arthritis Rheum.
65:1522–1529. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Syrbe U, Scheer R, Wu P and Sieper J:
Differential synovial Th1 cell reactivity towards Escherichia coli
antigens in patients with ankylosing spondylitis and rheumatoid
arthritis. Ann Rheum Dis. 71:1573–1576. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang Y, Luo J, Wang X, Yang B and Cui L:
MicroRNA-199a-5p induced autophagy and inhibits the pathogenesis of
ankylosing spondylitis by modulating the mTOR signaling via
directly targeting ras homolog enriched in brain (Rheb). Cell
Physiol Biochem. 42:24812017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hou C, Zhu M, Sun M and Lin Y: MicroRNA
let-7i induced autophagy to protect T cell from apoptosis by
targeting IGF1R. Biochem Biophys Res Commun. 453:728–734. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zou J, Appel H, Rudwaleit M, Thiel A and
Sieper J: Analysis of the CD8+ T cell response to the G1 domain of
aggrecan in ankylosing spondylitis. Ann Rheum Dis. 64:722–729.
2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu Y, Ren M, Yang R, Liang X, Ma Y, Tang
Y, Huang L, Ye J, Chen K, Wang P and Shen H: Reduced
immunomodulation potential of bone marrow-derived mesenchymal stem
cells induced CCR4+CCR6+ Th/Treg cell subset imbalance in
ankylosing spondylitis. Arthritis Res Ther. 13:R292011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nistala K, Moncrieffe H, Newton KR,
Varsani H, Hunter P and Wedderburn LR: Interleukin-17-producing T
cells are enriched in the joints of children with arthritis, but
have a reciprocal relationship to regulatory T cell numbers.
Arthritis Rheum. 58:875–887. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Reed JC: Bcl-2 and the regulation of
programmed cell death. J Cell Biol. 124:1–6. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hatok J and Racay P: Bcl-2 family
proteins: Master regulators of cell survival. Biomol Concepts.
7:259–270. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad
L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, et al:
Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther
Targets. 17:61–75. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gross A, Jockel J, Wei MC and Korsmeyer
SJ: Enforced dimerization of BAX results in its translocation,
mitochondrial dysfunction and apoptosis. EMBO J. 17:3878–3885.
1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Petrini M, Felicetti F, Bottero L, Errico
MC, Morsilli O, Boe A, De Feo A and Carè A: HOXB1 restored
expression promotes apoptosis and differentiation in the HL60
leukemic cell line. Cancer Cell Int. 13:1012013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Staton AA and Giraldez AJ: Use of target
protector morpholinos to analyze the physiological roles of
specific miRNA-mRNA pairs in vivo. Nat Protoc. 6:2035–2049. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Knauss JL, Bian S and Sun T: Plasmid-based
target protectors allow specific blockade of miRNA silencing
activity in mammalian developmental systems. Front Cell Neurosci.
7:1632013. View Article : Google Scholar : PubMed/NCBI
|