1
|
Park S, Keam B, Kim SH, Kim KH, Kim YJ,
Kim JS, Kim TM, Lee SH, Kim DW, Lee JS and Heo DS: Pemetrexed
singlet versus nonpemetrexed-based platinum doublet as second-line
chemotherapy following first-line epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitor failure in non-small cell lung
cancer patients with EGFR mutations. Cancer Res Treat. 47:630–637.
2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Masuda T, Imai H, Kuwako T, Miura Y,
Yoshino R, Kaira K, Shimizu K, Sunaga N, Tomizawa Y, Ishihara S, et
al: Effcacy of platinum combination chemotherapy following
frst-line geftinib treatment in non-small cell lung cancer patients
harboring sensitive EGFR mutations. Clin Transl Oncol. 17:702–709.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Polanski J, Jankowska-Polanska B,
Rosinczuk J, Chabowski M and Szymanska-Chabowska A: Quality of life
of patients with lung cancer. Onco Targets Ther. 9:1023–1028.
2016.PubMed/NCBI
|
4
|
Yan H, Fan HX, Song LH, Xie JC and Fan SF:
Relationship between contrast-enhanced CT and clinicopathological
characteristics and prognosis of non-small cell lung cancer. Oncol
Res Treat. 40:516–522. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Facchinetti F, Pilotto S, Metro G, Baldini
E, Bertolaccini L, Cappuzzo F, Delmonte A, Gasparini S, Inno A,
Marchetti A, et al: Treatment of metastatic non-small cell lung
cancer: 2018 guidelines of the Italian association of medical
oncology (AIOM). Tumori 105 (5 Suppl). S3–S14. 2019.
|
6
|
Stinchcombe TE, Borghaei H, Barker SS,
Treat JA and Obasaju C: Pemetrexed with platinum combination as a
backbone for targeted therapy in non-small-cell lung cancer. Clin
Lung Cancer. 17:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Al-Saleh K, Quinton C and Ellis PM: Role
of pemetrexed in advanced non-small-cell lung cancer: Meta-analysis
of randomized controlled trials, with histology subgroup analysis.
Curr Oncol. 19:e9–e15. 2012.PubMed/NCBI
|
8
|
Paz-Ares LG, de Marinis F, Dediu M, Thomas
M, Pujol JL, Bidoli P, Molinier O, Sahoo TP, Laack E, Reck M, et
al: PARAMOUNT: Final overall survival results of the phase III
study of maintenance pemetrexed versus placebo immediately
following induction treatment with pemetrexed plus cisplatin for
advanced nonsquamous non-small-cell lung cancer. J Clin Oncol.
31:2895–2902. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Fuld AD, Dragnev KH and Rigas JR:
Pemetrexed in advanced non-small-cell lung cancer. Expert Opin
Pharmacother. 11:1387–1402. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li J, Yen C, Liaw D, Podsypanina K, Bose
S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, et al:
PTEN, a putative protein tyrosine phosphatase gene mutated in human
brain, breast, and prostate cancer. Science. 275:1943–1947. 1997.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Carrera AC and Anderson R: The cell
biology behind the oncogenic PIP3 lipids. J Cell Sci. 132(pii):
jcs2283952019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Stambolic V, Suzuki A, de la Pompa JL,
Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM,
Siderovski DP and Mak TW: Negative regulation of PKB/Akt-dependent
cell survival by the tumor suppressor PTEN. Cell. 95:29–39. 1998.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Bufu T, Di X, Yilin Z, Gege L, Xi C and
Ling W: Celastrol inhibits colorectal cancer cell proliferation and
migration through suppression of MMP3 and MMP7 by the PI3K/AKT
signaling pathway. Anticancer Drugs. 29:530–538. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kechagioglou P, Papi RM, Provatopoulou X,
Kalogera E, Papadimitriou E, Grigoropoulos P, Nonni A, Zografos G,
Kyriakidis DA and Gounaris A: Tumor suppressor PTEN in breast
cancer: Heterozygosity, mutations and protein expression.
Anticancer Res. 34:1387–1400. 2014.PubMed/NCBI
|
15
|
Pérez-Ramírez C, Cañadas-Garre M, Molina
MÁ, Faus-Dáder MJ and Calleja-Hernández MÁ: PTEN and PI3K/AKT in
non-small-cell lung cancer. Pharmacogenomics. 16:1843–1862. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ni S, Wang H, Zhu X, Wan C, Xu J, Lu C,
Xiao L, He J, Jiang C, Wang W and He Z: CBX7 suppresses cell
proliferation, migration, and invasion through the inhibition of
PTEN/Akt signaling in pancreatic cancer. Oncotarget. 8:8010–8021.
2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jin X, Xu Z, Fan R, Wang C, Ji W, Ma Y,
Cai W, Zhang Y, Yang N, Zou S, et al: HO-1 alleviates
cholesterol-induced oxidative stress through activation of Nrf2/ERK
and inhibition of PI3K/AKT pathways in endothelial cells. Mol Med
Rep. 16:3519–3527. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Acheampong E, Spencer I, Lin W, Ziman M,
Millward M and Gray E: Is the blood an alternative for programmed
cell death ligand 1 assessment in non-small cell lung cancer?
Cancers (Basel). 11(pii): E9202019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Masters GA, Temin S, Azzoli CG, Giaccone
G, Baker S Jr, Brahmer JR, Ellis PM, Gajra A, Rackear N, Schiller
JH, et al: Systemic therapy for stage IV non-small-cell lung
cancer: American society of clinical oncology clinical practice
guideline update. J Clin Oncol. 33:3488–3515. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rothbart SB, Racanelli AC and Moran RG:
Pemetrexed indirectly activates the metabolic kinase AMPK in human
carcinomas. Cancer Res. 70:10299–10309. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Steck PA, Pershouse MA, Jasser SA, Yung
WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T,
et al: Identification of a candidate tumour suppressor gene, MMAC1,
at chromosome 10q23.3 that is mutated in multiple advanced cancers.
Nat Genet. 15:356–362. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tibarewal P, Zilidis G, Spinelli L,
Schurch N, Maccario H, Gray A, Perera NM, Davidson L, Barton GJ and
Leslie NR: PTEN protein phosphatase activity correlates with
control of gene expression and invasion, a tumor-suppressing
phenotype, but not with AKT activity. Sci Signal. 5:ra182012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Andrés-Pons A, Gil A, Oliver MD, Sotelo NS
and Pulido R: Cytoplasmic p27Kip1 counteracts the pro-apoptotic
function of the open conformation of PTEN by retention and
destabilization of PTEN outside of the nucleus. Cell Signal.
24:577–587. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Luna S, Mingo J, Aurtenetxe O, Blanco L,
Amo L, Schepens J, Hendriks WJ and Pulido R: Tailor-made protein
tyrosine phosphatases: In vitro site-directed mutagenesis of PTEN
and PTPRZ-B. Methods Mol Biol. 1447:79–93. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Huang J and Manning BD: A complex
interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc
Trans. 37:217–222. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yu H, Qiu Y, Pang X, Li J, Wu S, Yin S,
Han L, Zhang Y, Jin C, Gao X, et al: Lycorine promotes autophagy
and apoptosis via TCRP1/Akt/mTOR axis inactivation in human
hepatocellular carcinoma. Mol Cancer Ther. 16:2711–2723. 2017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Hwang KE, Kim YS, Jung JW, Kwon SJ, Park
DS, Cha BK, Oh SH, Yoon KH, Jeong ET and Kim HR: Inhibition of
autophagy potentiates pemetrexed and simvastatin-induced apoptotic
cell death in malignant mesothelioma and non-small cell lung cancer
cells. Oncotarget. 6:29482–29496. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang X, Simpson ER and Brown KA: p53:
Protection against tumor growth beyond effects on cell cycle and
apoptosis. Cancer Res. 75:5001–5007. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Matsuda S, Nakagawa Y, Kitagishi Y,
Nakanishi A and Murai T: Reactive oxygen species, superoxide
dimutases, and PTEN-p53-AKT-MDM2 signaling loop network in
mesenchymal stem/stromal cells regulation. Cells. 7(pii): E362018.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hollstein M, Sidransky D, Vogelstein B and
Harris CC: p53 mutations in human cancers. Science. 253:49–53.
1991. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lane DP: Cancer. p53, guardian of the
genome. Nature. 358:15–16. 1992. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Li Y, Guessous F, Kwon S, Kumar M, Ibidapo
O, Fuller L, Johnson E, Lal B, Hussaini I, Bao Y, et al: PTEN has
tumor-promoting properties in the setting of gain-of-function p53
mutations. Cancer Res. 68:1723–1731. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yu J, Zhang L, Hwang PM, Kinzler KW and
Vogelstein B: PUMA induces the rapid apoptosis of colorectal cancer
cells. Mol Cell. 7:673–682. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sheikh MS, Burns TF, Huang Y, Wu GS,
Amundson S, Brooks KS, Fornace AJ Jr and el-Deiry WS: p53-dependent
and -independent regulation of the death receptor KILLER/DR5 gene
expression in response to genotoxic stress and tumor necrosis
factor alpha. Cancer Res. 58:1593–1598. 1998.PubMed/NCBI
|
36
|
Peña-Blanco A and García-Sáez AJ: Bax, Bak
and beyond-mitochondrial performance in apoptosis. FEBS J.
285:416–431. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cosentino K and García-Sáez AJ: BAX and
Bak pores: Are we closing the circle? Trends Cell Biol. 27:266–275.
2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Miyashita T and Reed JC: Tumor suppressor
p53 is a direct transcriptional activator of the human bax gene.
Cell. 80:293–299. 1995. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ugarte-Uribe B and García-Sáez AJ:
Apoptotic foci at mitochondria: In and around Bax pores. Philos
Trans R Soc Lond B Biol Sci. 372(pii): 201602172017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Villanova L, Careccia S, De Maria R and
Fiori ME: Micro-economics of apoptosis in cancer: ncRNAs modulation
of BCL-2 family members. Int J Mol Sci. 19(pii): E9582018.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Letai A, Sorcinelli MD, Beard C and
Korsmeyer SJ: Anti-apoptotic BCL-2 is required for maintenance of a
model leukemia. Cancer Cell. 6:241–249. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lessene G, Czabotar PE and Colman PM:
BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov.
7:989–1000. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Delbridge AR, Grabow S, Strasser A and
Vaux DL: Thirty years of BCL-2: Translating cell death discoveries
into novel cancer therapies. Nat Rev Cancer. 16:99–109. 2016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Levine AJ and Puzio-Kuter AM: The control
of the metabolic switch in cancers by oncogenes and tumor
suppressor genes. Science. 330:1340–1344. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang R and Green DR: Metabolic checkpoints
in activated T cells. Nat Immunol. 13:907–915. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chen JQ and Russo J: Dysregulation of
glucose transport, glycolysis, TCA cycle and glutaminolysis by
oncogenes and tumor suppressors in cancer cells. Biochim Biophys
Acta. 1826:370–384. 2012.PubMed/NCBI
|