1
|
GBD 2013 Mortailty and Cause of Death
Collaborators, . Global, regional, and national age-sex specific
all-cause and cause-specific mortality for 240 causes of death,
1990–2013: A systematic analysis for the global burden of disease
study 2013. Lancet. 385:117–171. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lai T, Li M, Zheng L, Song Y, Xu X, Guo Y,
Zhang Y, Zhang Z and Mei Y: Over-expression of VEGF in marrow
stromal cells promotes angiogenesis in rats with cerebral
infarction via the synergistic effects of VEGF and Ang-2. J
Huazhong Uni Sci Technolog Med Sci. 32:724–731. 2012. View Article : Google Scholar
|
3
|
Benjamin EJ, Muntner P, Alonso A,
Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR,
Cheng S, Das SR, et al: Heart disease and stroke statistics-2019
update: A report from the american heart association. Circulation.
139:e56–e528. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liberale L, Carbone F, Montecucco F,
Gebhard C, Lüscher TF, Wegener S and Camici GG: Ischemic stroke
across sexes: What is the status quo? Front Neuroendocrinol.
50:3–17. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ma XH, Gao Q, Jia Z and Zhang ZW:
Neuroprotective capabilities of TSA against cerebral
ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats.
Int J Neurosci. 125:140–146. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dong S, Tong X, Li J, Huang C, Hu C, Jiao
H and Gu Y: Total flavonoid of Litsea coreana leve exerts
anti-oxidative effects and alleviates focal cerebral
ischemia/reperfusion injury. Neural Regen Res. 8:3193–3202.
2013.PubMed/NCBI
|
7
|
Thompson JW, Narayanan SV, Koronowski KB,
Morris- Blanco K, Dave KR and Perez-Pinzon MA: Signaling pathways
leading to ischemic mitochondrial neuroprotection. J Bioenerg
Biomembr. 47:101–110. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sadana P, Coughlin L, Burke J, Woods R and
Mdzinarishvili A: Anti-edema action of thyroid hormone in MCAO
model of ischemic brain stroke: Possible association with AQP4
modulation. J Neurol Sci. 354:37–45. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang K: Integration of ER stress,
oxidative stress and the inflammatory response in health and
disease. Int J Clin Exp Med. 3:33–40. 2010.PubMed/NCBI
|
10
|
Shen YQ, Guerra-Librero A, Fernandez-Gil
BI, Florido J, García-López S, Martinez-Ruiz L, Mendivil-Perez M,
Soto-Mercado V, Acuña-Castroviejo D, Ortega-Arellano H, et al:
Combination of melatonin and rapamycin for head and neck cancer
therapy: Suppression of AKT/mTOR pathway activation and activation
of mitophagy and apoptosis via mitochondrial function regulation. J
Pineal Res. 64:2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cybulsky AV: Endoplasmic reticulum stress,
the unfolded protein response and autophagy in kidney diseases. Nat
Rev Nephrol. 13:681–696. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Goldstein AL, Hannappel E and Kleinman HK:
Thymosin beta4: Actin-sequestering protein moonlights to repair
injured tissues. Trends Mol Med. 11:421–429. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wong CG, Taban M, Osann K, Ross-Cisneros
FN, Bruice TC, Zahn G and You T: Subchoroidal release of VEGF and
bFGF produces choroidal neovascularization in rabbit. Curr Eye Res.
42:237–243. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim S and Kwon J: Thymosin beta 4 improves
dermal burn wound healing via downregulation of receptor of
advanced glycation end products in db/db mice. Biochim Biophys
Acta. 1840:3452–3459. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sosne G and Ousler GW: Thymosin beta 4
ophthalmic solution for dry eye: A randomized, placebo-controlled,
phase II clinical trial conducted using the controlled adverse
environment (CAE™) model. Clin Ophthalmol. 9:877–884.
2015.PubMed/NCBI
|
16
|
Choi SY, Noh MR, Kim DK, Sun W and Kim H:
Neuroprotective function of thymosin-beta and its derivative
peptides on the programmed cell death of chick and rat neurons.
Biochem Biophys Res Commun. 362:587–593. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Morris DC, Cui Y, Cheung WL, Lu M, Zhang
L, Zhang ZG and Chopp M: A dose-response study of thymosin β4 for
the treatment of acute stroke. J Neurol Sci. 345:61–67. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu XH, Bi HY, Cao J, Ren S and Yue SW:
Early constraint-induced movement therapy affects behavior and
neuronal plasticity in ischemia-injured rat brains. Neural Regen
Res. 14:775–782. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
O'Donnell ME, Tran L, Lam TI, Liu XB and
Anderson SE: Bumetanide inhibition of the blood-brain barrier
Na-K-Cl cotransporter reduces edema formation in the rat middle
cerebral artery occlusion model of stroke. J Cereb Blood Flow
Metab. 24:1046–1056. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li J, Yang S and Zhu G: Postnatal calpain
inhibition elicits cerebellar cell death and motor dysfunction.
Oncotarget. 8:87997–88007. 2017.PubMed/NCBI
|
21
|
Song ZJ, Yang SJ, Han L, Wang B and Zhu G:
Postnatal calpeptin treatment causes hippocampal neurodevelopmental
defects in neonatal rats. Neural Regen Res. 14:834–840. 2019.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S,
Yang Y and Gu C: AMPK: Potential therapeutic target for ischemic
stroke. Theranostics. 8:4535–4551. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lv J, Jiang S, Yang Z, Hu W, Wang Z, Li T
and Yang Y: PGC-1α sparks the fire of neuroprotection against
neurodegenerative disorders. Ageing Res Rev. 44:8–21. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kuzan A: Thymosin β as an actin-binding
protein with a variety of functions. Adv Clin Exp Med.
25:1331–1336. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang YY, Zhu QS, Wang YW and Yin RF:
Thymosin beta-4 recombinant adeno-associated virus enhances human
nucleus pulposus cell proliferation and reduces cell apoptosis and
senescence. Chin Med J (Engl). 128:1529–1535. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sosne G, Rimmer D, Kleinman HK and Ousler
G: Thymosin beta 4: A potential novel therapy for neurotrophic
keratopathy, dry eye, and ocular surface diseases. Vitam Horm.
102:277–306. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Stark CK, Tarkia M, Kentala R, Malmberg M,
Vähäsilta T, Savo M, Hynninen VV, Helenius M, Ruohonen S, Jalkanen
J, et al: Systemic dosing of thymosin beta 4 before and after
ischemia does not attenuate global myocardial ischemia-reperfusion
injury in pigs. Front Pharmacol. 7:1152016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Deville C, Girard-Blanc C, Assrir N, Nhiri
N, Jacquet E, Bontems F, Renault L, Petres S and van Heijenoort C:
Mutations in actin used for structural studies partially disrupt
β-thymosin/WH2 domains interaction. FEBS Lett. 590:3690–3699. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Jiang W, Liang G, Li X, Li Z, Gao X, Feng
S, Wang X, Liu M and Liu Y: Intracarotid transplantation of
autologous adipose-derived mesenchymal stem cells significantly
improves neurological deficits in rats after MCAo. J Mater Sci
Mater Med. 25:1357–1366. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yu ZH, Cai M, Xiang J, Zhang ZN, Zhang JS,
Song XL, Zhang W, Bao J, Li WW and Cai DF: PI3K/Akt pathway
contributes to neuroprotective effect of Tongxinluo against focal
cerebral ischemia and reperfusion injury in rats. J Ethnopharmacol.
181:8–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Brown MK and Naidoo N: The endoplasmic
reticulum stress response in aging and age-related diseases. Front
Physiol. 3:2632012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hetz C: The unfolded protein response:
Controlling cell fate decisions under ER stress and beyond. Nat Rev
Mol Cell Biol. 13:89–102. 2012. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Li J, Ni M, Lee B, Barron E, Hinton DR and
Lee AS: The unfolded protein response regulator GRP78/BiP is
required for endoplasmic reticulum integrity and stress-induced
autophagy in mammalian cells. Cell Death Differ. 15:1460–1471.
2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ye Z, Wang N, Xia P, Wang E, Liao J and
Guo Q: Parecoxib suppresses CHOP and Foxo1 nuclear translocation,
but increases GRP78 levels in a rat model of focal ischemia.
Neurochemical Res. 38:686–693. 2013. View Article : Google Scholar
|
35
|
Chen HL, Qi H, Liu XJ and Wang MS: Effect
of electroacupuncture pretreatment on apoptotic neurons and
expression of GRP 78 and GADD 153 in the hippocampus in rats with
global cerebral ischemia/reperfusion injury. Zhen Ci Yan Jiu.
39:431–436. 2014.(In Chinese). PubMed/NCBI
|
36
|
Dong YF, Chen ZZ, Zhao Z, Yang DD, Yan H,
Ji J and Sun XL: Potential role of microRNA-7 in the
anti-neuroinflammation effects of nicorandil in astrocytes induced
by oxygen-glucose deprivation. J Neuroinflammation. 13:602016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Tong Q, Wu L, Jiang T, Ou Z, Zhang Y and
Zhu D: Inhibition of endoplasmic reticulum stress-activated
IRE1α-TRAF2-caspase-12 apoptotic pathway is involved in the
neuroprotective effects of telmisartan in the rotenone rat model of
Parkinson's disease. Eur J Pharmacol. 776:106–115. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Q, Liu J, Chen S, Liu J, Liu L, Liu
G, Wang F, Jiang W, Zhang C, Wang S and Yuan X: Caspase-12 is
involved in stretch-induced apoptosis mediated endoplasmic
reticulum stress. Apoptosis. 21:432–442. 2016. View Article : Google Scholar : PubMed/NCBI
|