1
|
Shan R, Sarkar S and Martin SS: Digital
health technology and mobile devices for the management of diabetes
mellitus: State of the art. Diabetologia. 62:877–887. 2019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang H, Bender A, Wang P, Karakose E,
Inabnet WB, Libutti SK, Arnold A, Lambertini L, Stang M, Chen H, et
al: Insights into beta cell regeneration for diabetes via
integration of molecular landscapes in human insulinomas. Nat
Commun. 8:7672017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yu LT, Yang MQ, Liu JL, Alfred MO, Li X,
Zhang XQ, Zhang J, Wu MY, Wang M and Luo C: Recombinant Reg3α
protein protects against experimental acute pancreatitis in mice.
Mol Cell Endocrinol. 422:150–159. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kataoka M, Kawamuro Y, Shiraki N, Miki R,
Sakano D, Yoshida T, Yasukawa T, Kume K and Kume S: Recovery from
diabetes in neonatal mice after a low-dose streptozotocin
treatment. Biochem Biophys Res Commun. 430:1103–1108. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Howarth FC and Qureshi MA:
Characterisation of ventricular myocyte shortening after
administration of streptozotocin (STZ) to neonatal rats. Arch
Physiol Biochem. 109:200–205. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Takada J, Machado MA, Peres SB, Brito LC,
Borges-Silva CN, Costa CE, Fonseca-Alaniz MH, Andreotti S and Lima
FB: Neonatal streptozotocin-induced diabetes mellitus: A model of
insulin resistance associated with loss of adipose mass.
Metabolism. 56:977–984. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang R: Lipasin, a novel
nutritionally-regulated liver-enriched factor that regulates serum
triglyceride levels. Biochem Biophys Res Commun. 424:786–792. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Abu-Farha M, Abubaker J and Tuomilehto J:
ANGPTL8 (betatrophin) role in diabetes and metabolic diseases.
Diabetes Metab Res Rev. 332017.doi: 10.1002/dmrr.2919.
|
9
|
Ren G, Kim JY and Smas CM: Identification
of RIFL, a novel adipocyte-enriched insulin target gene with a role
in lipid metabolism. Am J Physiol Endocrinol Metab. 303:E334–E351.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang R and Abou-Samra AB: Emerging roles
of Lipasin as a critical lipid regulator. Biochem Biophys Res
Commun. 432:401–405. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Raghow R: Betatrophin: A liver-derived
hormone for the pancreatic β-cell proliferation. World J Diabetes.
4:234–237. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jiao Y, Le Lay J, Yu M, Naji A and
Kaestner KH: Elevated mouse hepatic betatrophin expression does not
increase human β-cell replication in the transplant setting.
Diabetes. 63:1283–1288. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cox AR, Lam CJ, Bonnyman CW, Chavez J,
Rios JS and Kushner JA: Angiopoietin-like protein 8
(ANGPTL8)/betatrophin overexpression does not increase beta cell
proliferation in mice. Diabetologia. 58:1523–1531. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Trebotic LK, Klimek P, Thomas A, Fenzl A,
Leitner K, Springer S, Kiefer FW and Kautzky-Willer A: Circulating
betatrophin is strongly increased in pregnancy and gestational
diabetes mellitus. PLoS One. 10:e01367012015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Espes D, Lau J and Carlsson PO: Increased
circulating levels of betatrophin in individuals with long-standing
type 1 diabetes. Diabetologia. 57:50–53. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fu Z, Berhane F, Fite A, Seyoum B,
Abou-Samra AB and Zhang R: Elevated circulating lipasin/betatrophin
in human type 2 diabetes and obesity. Sci Rep. 4:50132014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang YY, Zhang D, Jiang ZY, Lu XQ, Zheng
X, Yu YJ, Wang YG and Dong J: Positive association between
betatrophin and diabetic retinopathy risk in Type 2 diabetes
patients. Horm Metab Res. 48:169–173. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yuan JH, Chen X, Dong J, Zhang D, Song K,
Zhang Y, Wu GB, Hu XH, Jiang ZY and Chen P: Nesfatin-1 in the
lateral parabrachial nucleus inhibits food intake, modulates
excitability of glucosensing neurons, and enhances UCP1 expression
in brown adipose tissue. Front Physiol. 8:2352017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li Q, Li B, Miao X, Ramgattie C, Gao ZH
and Liu JL: Reg2 Expression is required for pancreatic islet
compensation in response to aging and high-fat diet-induced
obesity. Endocrinology. 158:1634–1644. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Irako T, Akamizu T, Hosoda H, Iwakura H,
Ariyasu H, Tojo K, Tajima N and Kangawa K: Ghrelin prevents
development of diabetes at adult age in streptozotocin-treated
newborn rats. Diabetologia. 49:1264–1273. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tourrel C, Bailbé D, Meile MJ, Kergoat M
and Portha B: Glucagon-like peptide-1 and exendin-4 stimulate
beta-cell neogenesis in streptozotocin-treated newborn rats
resulting in persistently improved glucose homeostasis at adult
age. Diabetes. 50:1562–1570. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen J, Chen S, Huang P, Meng XL, Clayton
S, Shen JS and Grayburn PA: In vivo targeted delivery of ANGPTL8
gene for beta cell regeneration in rats. Diabetologia.
58:1036–1044. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sun LL, Liu TJ, Li L, Tang W, Zou JJ, Chen
XF, Zheng JY, Jiang BG and Shi YQ: Transplantation of
betatrophin-expressing adipose-derived mesenchymal stem cells
induces β-cell proliferation in diabetic mice. Int J Mol Med.
39:936–948. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang RN, Bouwens L and Klöppel G:
Beta-cell proliferation in normal and streptozotocin-treated
newborn rats: Site, dynamics and capacity. Diabetologia.
37:1088–1096. 1994. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kassem SA, Ariel I, Thornton PS,
Scheimberg I and Glaser B: Beta-cell proliferation and apoptosis in
the developing normal human pancreas and in hyperinsulinism of
infancy. Diabetes. 49:1325–1333. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang Y, Li S, Donelan W, Xie C, Wang H,
Wu Q, Purich DL, Reeves WH, Tang D and Yang LJ: Angiopoietin-like
protein 8 (betatrophin) is a stress-response protein that
down-regulates expression of adipocyte triglyceride lipase. Biochim
Biophys Acta. 1861:130–137. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Martinez-Perez B, Ejarque M, Gutierrez C,
Nuñez-Roa C, Roche K, Vila-Bedmar R, Ballesteros M, Redondo-Angulo
I, Planavila A, Villarroya F, et al: Angiopoietin-like protein 8
(ANGPTL8) in pregnancy: A brown adipose tissue-derived endocrine
factor with a potential role in fetal growth. Transl Res. 178:1–12.
2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wawrusiewicz-Kurylonek N, Telejko B,
Kuzmicki M, Sobota A, Lipinska D, Pliszka J, Raczkowska B, Kuc P,
Urban R, Szamatowicz J, et al: Increased maternal and cord blood
betatrophin in gestational diabetes. PLoS One. 10:e01311712015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Stewart AF: Betatrophin versus
bitter-trophin and the elephant in the room: Time for a new normal
in β-cell regeneration research. Diabetes. 63:1198–1199. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Gusarova V, Alexa CA, Na E, Stevis PE, Xin
Y, Bonner-Weir S, Cohen JC, Hobbs HH, Murphy AJ, Yancopoulos GD and
Gromada J: ANGPTL8/betatrophin does not control pancreatic beta
cell expansion. Cell. 159:691–696. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Spaeth JM, Gupte M, Perelis M, Yang YP,
Cyphert H, Guo S, Liu JH, Guo M, Bass J, Magnuson MA, et al:
Defining a novel role for the Pdx1 transcription factor in islet
β-cell maturation and proliferation during weaning. Diabetes.
66:2830–2839. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Singh R, Letai A and Sarosiek K:
Regulation of apoptosis in health and disease: The balancing act of
BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang Y, Zheng L and Huang K: A new way to
regulate inflammation: Selective autophagic degradation of
IKKY mediated by ANGPTL8. Cell Stress. 2:66–68. 2018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Luo D, Chen X, Yang W, Ran W and Wen Z:
Angiopoietin-like 8 improves insulin resistance and attenuates
adipose tissue inflammation in diet-induced obese mice. Exp Clin
Endocrinol Diabetes. Sep 26–2018.doi: 10.1055/a-0725-7897 (Epub
ahead of print).
|
35
|
Zhang Y, Guo X, Yan W, Chen Y, Ke M, Cheng
C, Zhu X, Xue W, Zhou Q, Zheng L, et al: ANGPTL8 negatively
regulates NF-κB activation by facilitating selective autophagic
degradation of IKKY. Nat Commun. 8:21642017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang R, Yuan J, Zhang C, Wang L, Liu Y,
Song L, Zhong W, Chen X and Dong J: Neuropeptide Y-positive neurons
in the dorsomedial hypothalamus are involved in the anorexic effect
of Angptl8. Front Mol Neurosci. 11:4512018. View Article : Google Scholar : PubMed/NCBI
|