1
|
Rendon A, Rendon-Ramirez EJ and
Rosas-Taraco AG: Relevant cytokines in the management of
community-acquired pneumonia. Curr Infect Dis Rep. 18:102016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Adler A, Baraniak A, Izdebski R, Fiett J,
Gniadkowski M, Hryniewicz W, Salvia A, Rossini A, Goossens H,
Malhotra S, et al: A binational cohort study of intestinal
colonization with extended-spectrum β-lactamase-producing proteus
mirabilis in patients admitted to rehabilitation centres. Clin
Microbiol Infect. 19:E51–E58. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Domon H, Nagai K, Maekawa T, Oda M,
Yonezawa D, Takeda W, Hiyoshi T, Tamura H, Yamaguchi M, Kawabata S
and Terao Y: Neutrophil elastase subverts the immune response by
cleaving toll-like receptors and cytokines in pneumococcal
pneumonia. Front Immunol. 9:7322018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Baldo V, Cocchio S, Gallo T, Furlan P,
Romor P, Bertoncello C, Buja A and Baldovin T: Pneumococcal
conjugated vaccine reduces the high mortality for
community-acquired pneumonia in the elderly: An italian regional
experience. PLoS One. 11:e01666372016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Weycker D, Farkouh RA, Strutton DR,
Edelsberg J, Shea KM and Pelton SI: Rates and costs of invasive
pneumococcal disease and pneumonia in persons with underlying
medical conditions. BMC Health Serv Res. 16:1822016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Maus U, Rosseau S, Knies U, Seeger W and
Lohmeyer J: Expression of pro-inflammatory cytokines by flow-sorted
alveolar macrophages in severe pneumonia. Eur Respir J. 11:534–541.
1998.PubMed/NCBI
|
7
|
Perny M, Roccio M, Grandgirard D, Solyga
M, Senn P and Leib SL: The severity of infection determines the
localization of damage and extent of sensorineural hearing loss in
experimental pneumococcal meningitis. J Neurosci. 36:7740–7749.
2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Weichelt U, Cay R, Schmitz T, Strauss E,
Sifringer M, Buhrer C and Endesfelder S: Prevention of
hyperoxia-mediated pulmonary inflammation in neonatal rats by
caffeine. Eur Respir J. 41:966–973. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Song C, Li H, Zhang Y and Yu J: Effects of
Pseudomonas aeruginosa and Streptococcus mitis mixed
infection on TLR4-mediated immune response in acute pneumonia mouse
model. BMC Microbiol. 17:822017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Oshima Y, Ouchi N, Sato K, Izumiya Y,
Pimentel DR and Walsh K: Follistatin-like 1 is an Akt-regulated
cardioprotective factor that is secreted by the heart. Circulation.
117:3099–3108. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wilson DC, Marinov AD, Blair HC, Bushnell
DS, Thompson SD, Chaly Y and Hirsch R: Follistatin-like protein 1
is a mesenchyme-derived inflammatory protein and may represent a
biomarker for systemic-onset juvenile rheumatoid arthritis.
Arthritis Rheum. 62:2510–2516. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Miyamae T, Marinov AD, Sowders D, Wilson
DC, Devlin J, Boudreau R, Robbins P and Hirsch R: Follistatin-like
protein-1 is a novel proinflammatory molecule. J Immunol.
177:4758–4762. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chaly Y, Fu Y, Marinov A, Hostager B, Yan
W, Campfield B, Kellum JA, Bushnell D, Wang Y, Vockley J and Hirsch
R: Follistatin-like protein 1 enhances NLRP3 inflammasome-mediated
IL-1β secretion from monocytes and macrophages. Eur J Immunol.
44:1467–1479. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Katsuyama E, Miyamoto H, Kobayashi T, Sato
Y, Hao W, Kanagawa H, Fujie A, Tando T, Watanabe R, Morita M, et
al: Interleukin-1 receptor-associated kinase-4 (IRAK4) promotes
inflammatory osteolysis by activating osteoclasts and inhibiting
formation of foreign body giant cells. J Biol Chem. 290:716–726.
2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dinarello CA: Immunological and
inflammatory functions of the interleukin-1 family. Annu Rev
Immunol. 27:519–550. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Baroja-Mazo A, Martin-Sanchez F, Gomez AI,
Martinez CM, Amores-Iniesta J, Compan V, Barbera-Cremades M, Yague
J, Ruiz-Ortiz E, Anton J, et al: The NLRP3 inflammasome is released
as a particulate danger signal that amplifies the inflammatory
response. Nat Immunol. 15:738–748. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Medzhitov R: Toll-like receptors and
innate immunity. Nat Rev Immunol. 1:135–145. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kawai T and Akira S: The role of
pattern-recognition receptors in innate immunity: Update on
Toll-like receptors. Nat Immunol. 11:373–384. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Inaba K, Inaba M, Romani N, Aya H, Deguchi
M, Ikehara S, Muramatsu S and Steinman RM: Generation of large
numbers of dendritic cells from mouse bone marrow cultures
supplemented with granulocyte/macrophage colony-stimulating factor.
J Exp Med. 176:1693–1702. 1992. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Madouri F, Barada O, Kervoaze G, Trottein
F, Pichavant M and Gosset P: Production of interleukin-20 cytokines
limits bacterial clearance and lung inflammation during infection
by Streptococcus pneumoniae. EBioMedicine. 37:417–427. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kato H, Yamagishi Y, Hagihara M, Yokoyama
Y, Suematsu H, Asai N, Koizumi Y and Mikamo H: Antimicrobial
activity of solithromycin and levofloxacin against a murine
pneumonia mixed-infection model caused by Streptococcus
pneumoniae and anaerobic bacteria. J Infect Chemother.
25:311–313. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hsu CF, Hsiao CH, Tseng SF, Chen JR, Liao
YJ, Chen SJ, Lin CS, Sytwu HK and Chuang YP: PrtA immunization
fails to protect against pulmonary and invasive infection by
Streptococcus pneumoniae. Respir Res. 19:1872018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li H, Chen X and Zhou SJ: Dauricine
combined with clindamycin inhibits severe pneumonia co-infected by
influenza virus H5N1 and Streptococcus pneumoniae in vitro
and in vivo through NF-κB signaling pathway. J Pharmacol Sci.
137:12–19. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Campfield BT, Eddens T, Henkel M, Majewski
M, Horne W, Chaly Y, Gaffen SL, Hirsch R and Kolls JK:
Follistatin-like protein 1 modulates IL-17 signaling via IL-17RC
regulation in stromal cells. Immunol Cell Biol. 95:656–665. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
McElvaney OJ, Zaslona Z, Becker-Flegler K,
Palsson-McDermott EM, Boland F, Gunaratnam C, Gulbins E, O'Neill
LA, Reeves EP and McElvaney NG: Specific inhibition of the NLRP3
inflammasome as an anti-inflammatory strategy in cystic fibrosis.
Am J Respir Crit Care Med. Aug 27–2019.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hoegen T, Tremel N, Klein M, Angele B,
Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S and
Koedel U: The NLRP3 inflammasome contributes to brain injury in
pneumococcal meningitis and is activated through ATP-dependent
lysosomal cathepsin B release. J Immunol. 187:5440–5451. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Stout-Delgado HW, Cho SJ, Chu SG, Mitzel
DN, Villalba J, El-Chemaly S, Ryter SW, Choi AM and Rosas IO:
Age-dependent susceptibility to pulmonary fibrosis is associated
with NLRP3 inflammasome activation. Am J Respir Cell Mol Biol.
55:252–263. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Moon JS, Nakahira K, Chung KP, DeNicola
GM, Koo MJ, Pabon MA, Rooney KT, Yoon JH, Ryter SW, Stout-Delgado H
and Choi AM: NOX4-dependent fatty acid oxidation promotes NLRP3
inflammasome activation in macrophages. Nat Med. 22:1002–1012.
2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Clutter SD, Wilson DC, Marinov AD and
Hirsch R: Follistatin-like protein 1 promotes arthritis by
up-regulating IFN-gamma. J Immunol. 182:234–239. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dong D, Zhou H, Na SY, Niedra R, Peng Y,
Wang H, Seed B and Zhou GL: GPR108, an NF-κB activator suppressed
by TIRAP, negatively regulates TLR-triggered immune responses. PLoS
One. 13:e02053032018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu L, Pang XL, Shang WJ, Xie HC, Wang JX
and Feng GW: Over-expressed microRNA-181a reduces glomerular
sclerosis and renal tubular epithelial injury in rats with chronic
kidney disease via down-regulation of the TLR/NF-κB pathway by
binding to CRY1. Mol Med. 24:492018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Niu W, Sun B, Li M, Cui J, Huang J and
Zhang L: TLR-4/microRNA-125a/NF-κB signaling modulates the immune
response to Mycobacterium tuberculosis infection. Cell Cycle.
17:1931–1945. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Becker CE and O'Neill LA: Inflammasomes in
inflammatory disorders: The role of TLRs and their interactions
with NLRs. Semin Immunopathol. 29:239–248. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bankers-Fulbright JL, Kalli KR and McKean
DJ: Interleukin-1 signal transduction. Life Sci. 59:61–83. 1996.
View Article : Google Scholar : PubMed/NCBI
|