1
|
Mantyh P: Bone cancer pain: Causes,
consequences, and therapeutic opportunities. Pain. 154 (Suppl
1):S54–S62. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mantyh PW: Cancer pain and its impact on
diagnosis, survival and quality of life. Nat Rev Neurosci.
7:797–809. 2006. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Honore P, Luger NM, Sabino MA, Schwei MJ,
Rogers SD, Mach DB, O'keefe PF, Ramnaraine ML, Clohisy DR and
Mantyh PW: Osteoprotegerin blocks bone cancer-induced skeletal
destruction, skeletal pain and pain-related neurochemical
reorganization of the spinal cord. Nat Med. 6:521–528. 2000.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Miller K, Steger GG, Niepel D and Luftner
D: Harnessing the potential of therapeutic agents to safeguard bone
health in prostate cancer. Prostate Cancer Prostatic Dis.
21:461–472. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ji RR, Xu ZZ and Gao YJ: Emerging targets
in neuroinflammation-driven chronic pain. Nat Rev Drug Discov.
13:533–548. 2014. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Ligresti A, De Petrocellis L and Di Marzo
V: From phytocannabinoids to cannabinoid receptors and
endocannabinoids: Pleiotropic physiological and pathological roles
through complex pharmacology. Physiol Rev. 96:1593–1659. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kendall DA and Yudowski GA: Cannabinoid
receptors in the central nervous system: Their signaling and roles
in disease. Front Cell Neurosci. 10:2942016.PubMed/NCBI
|
8
|
Devane WA, Dysarz FA III, Johnson MR,
Melvin LS and Howlett AC: Determination and characterization of a
cannabinoid receptor in rat brain. Mol Pharmacol. 34:605–613.
1988.PubMed/NCBI
|
9
|
Pernia-Andrade AJ, Kato A, Witschi R,
Nyilas R, Katona I, Freund TF, Watanabe M, Filitz J, Koppert W,
Schüttler J, et al: Spinal endocannabinoids and CB1 receptors
mediate C-fiber-induced heterosynaptic pain sensitization. Science.
325:760–764. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Racz I, Nadal X, Alferink J, Baños JE,
Rehnelt J, Martín M, Pintado B, Gutierrez-Adan A, Sanguino E,
Manzanares J, et al: Crucial role of CB(2) cannabinoid receptor in
the regulation of central immune responses during neuropathic pain.
J Neurosci. 28:12125–12135. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pertwee RG: Targeting the endocannabinoid
system with cannabinoid receptor agonists: Pharmacological
strategies and therapeutic possibilities. Philos Trans R Soc Lond B
Biol Sci. 367:3353–3363. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fernandez-Ruiz J, Romero J, Velasco G,
Tolon RM, Ramos JA and Guzman M: Cannabinoid CB2 receptor: A new
target for controlling neural cell survival? Trends Pharmacol Sci.
28:39–45. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kalant H: Adverse effects of cannabis on
health: An update of the literature since 1996. Prog
Neuropsychopharmacol Biol Psychiatry. 28:849–863. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gao F, Xiang HC, Li HP, Jia M, Pan XL, Pan
HL and Li M: Electroacupuncture inhibits NLRP3 inflammasome
activation through CB2 receptors in inflammatory pain. Brain Behav
Immun. 67:91–100. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Niu J, Huang D, Zhou R, Yue M, Xu T, Yang
J, He L, Tian H, Liu X and Zeng J: Activation of dorsal horn
cannabinoid CB2 receptor suppresses the expression of P2Y12 and
P2Y13 receptors in neuropathic pain rats. J Neuroinflammation.
14:1852017. View Article : Google Scholar : PubMed/NCBI
|
16
|
La Porta C, Bura SA, Aracil-Fernandez A,
Manzanares J and Maldonado R: Role of CB1 and CB2 cannabinoid
receptors in the development of joint pain induced by monosodium
iodoacetate. Pain. 154:160–174. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li AL, Lin X, Dhopeshwarkar AS, Thomaz AC,
Carey LM, Liu Y, Nikas SP, Makriyannis A, Mackie K and Hohmann AG:
Cannabinoid CB2 Agonist AM1710 differentially suppresses distinct
pathological pain states and attenuates morphine tolerance and
withdrawal. Mol Pharmacol. 95:155–168. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu J, Hocevar M, Bie B, Foss JF and Naguib
M: Cannabinoid Type 2 receptor system modulates Paclitaxel-induced
microglial dysregulation and central sensitization in rats. J Pain.
20:501–514. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Feng XL, Deng HB, Wang ZG, Wu Y, Ke JJ and
Feng XB: Suberoylanilide hydroxamic acid triggers autophagy by
influencing the mTOR pathway in the spinal dorsal horn in a rat
neuropathic pain model. Neurochem Res. 44:450–464. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Coccurello R, Nazio F, Rossi C, De Angelis
F, Vacca V, Giacovazzo G, Procacci P, Magnaghi V, Ciavardelli D and
Marinelli S: Effects of caloric restriction on neuropathic pain,
peripheral nerve degeneration and inflammation in normometabolic
and autophagy defective prediabetic Ambra1 mice. PLoS One.
13:e02085962018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shao BZ, Wei W, Ke P, Xu ZQ, Zhou JX and
Liu C: Activating cannabinoid receptor 2 alleviates pathogenesis of
experimental autoimmune encephalomyelitis via activation of
autophagy and inhibiting NLRP3 inflammasome. CNS Neurosci Ther.
20:1021–1028. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Denaes T, Lodder J, Chobert MN, Ruiz I,
Pawlotsky JM, Lotersztajn S and Teixeira-Clerc F: The Cannabinoid
Receptor 2 protects against alcoholic liver disease via a
macrophage autophagy-dependent pathway. Sci Rep. 6:288062016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Vara D, Salazar M, Olea-Herrero N, Guzman
M, Velasco G and Diaz-Laviada I: Anti-tumoral action of
cannabinoids on hepatocellular carcinoma: Role of AMPK-dependent
activation of autophagy. Cell Death Differ. 18:1099–1111. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Salazar M, Carracedo A, Salanueva IJ,
Hernández-Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C,
Torres S, García S, et al: Cannabinoid action induces
autophagy-mediated cell death through stimulation of ER stress in
human glioma cells. J Clin Invest. 119:1359–1372. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Netea-Maier RT, Plantinga TS, van de
Veerdonk FL, Smit JW and Netea MG: Modulation of inflammation by
autophagy: Consequences for human disease. Autophagy. 12:245–260.
2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tian R, Li Y and Yao X: PGRN suppresses
inflammation and promotes autophagy in keratinocytes through the
Wnt/β-Catenin signaling pathway. Inflammation. 39:1387–1394. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Sil S, Niu F, Tom E, Liao K, Periyasamy P
and Buch S: Cocaine mediated neuroinflammation: Role of
dysregulated autophagy in pericytes. Mol Neurobiol. 56:3576–3590.
2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Piippo N, Korhonen E, Hytti M, Kinnunen K,
Kaarniranta K and Kauppinen A: Oxidative stress is the principal
contributor to inflammasome activation in retinal pigment
epithelium cells with defunct proteasomes and autophagy. Cell
Physiol Biochem. 49:359–367. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lu C, Liu Y, Sun B, Sun Y, Hou B, Zhang Y,
Ma Z and Gu X: Intrathecal injection of JWH-015 attenuates bone
cancer pain via time-dependent modification of pro-inflammatory
cytokines expression and astrocytes activity in spinal cord.
Inflammation. 38:1880–1890. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Demers G, Griffin G, De Vroey G, Haywood
JR, Zurlo J and Bédard M: Animal research. Harmonization of animal
care and use guidance. Science. 312:700–701. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schwei MJ, Honore P, Rogers SD,
Salak-Johnson JL, Finke MP, Ramnaraine ML, Clohisy DR and Mantyh
PW: Neurochemical and cellular reorganization of the spinal cord in
a murine model of bone cancer pain. J Neurosci. 19:10886–10897.
1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lu C, Shi L, Sun B, Zhang Y, Hou B, Sun Y,
Ma Z and Gu X: A single intrathecal or intraperitoneal injection of
CB2 receptor agonist attenuates bone cancer pain and induces a
time-dependent modification of GRK2. Cell Mol Neurobiol.
37:101–109. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gu X, Mei F, Liu Y, Zhang R, Zhang J and
Ma Z: Intrathecal administration of the cannabinoid 2 receptor
agonist JWH015 can attenuate cancer pain and decrease mRNA
expression of the 2B subunit of N-methyl-D-aspartic acid. Anesth
Analg. 113:405–411. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hylden JL and Wilcox GL: Intrathecal
morphine in mice: A new technique. Eur J Pharmacol. 67:313–316.
1980. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mizushima N and Klionsky DJ: Protein
turnover via autophagy: Implications for metabolism. Annu Rev Nutr.
27:19–40. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bjorkoy G, Lamark T, Brech A, Outzen H,
Perander M, Overvatn A, Stenmark H and Johansen T: p62/SQSTM1 forms
protein aggregates degraded by autophagy and has a protective
effect on huntingtin-induced cell death. J Cell Biol. 171:603–614.
2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hu Y, Li G, Zhang Y, Liu N, Zhang P, Pan
C, Nie H, Li Q and Tang Z: Upregulated TSG-6 expression in ADSCs
inhibits the BV2 Microglia-mediated inflammatory response. Biomed
Res Int. 2018:72391812018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ye J, Guan M, Lu Y, Zhang D, Li C and Zhou
C: Arbutin attenuates LPS-induced lung injury via
Sirt1/Nrf2/NF-kappaBp65 pathway. Pulm Pharmacol Ther. 54:53–59.
2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rubens RD: Bone metastases-the clinical
problem. Eur J Cancer. 34:210–213. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Weilbaecher KN, Guise TA and McCauley LK:
Cancer to bone: A fatal attraction. Nat Rev Cancer. 11:411–425.
2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sturge J, Caley MP and Waxman J: Bone
metastasis in prostate cancer: Emerging therapeutic strategies. Nat
Rev Clin Oncol. 8:357–368. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li MH, Suchland KL and Ingram SL:
Compensatory Activation of cannabinoid CB2 receptor inhibition of
GABA release in the rostral ventromedial medulla in inflammatory
pain. J Neurosci. 37:626–636. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Luongo L, Palazzo E, Tambaro S, Giordano
C, Gatta L, Scafuro MA, Rossi FS, Lazzari P, Pani L, de Novellis V,
et al:
1-(2′,4′-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide,
a novel CB2 agonist, alleviates neuropathic pain through functional
microglial changes in mice. Neurobiol Dis. 37:177–185. 2010.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Glick D, Barth S and Macleod KF:
Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12.
2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kumar D, Shankar S and Srivastava RK:
Rottlerin-induced autophagy leads to the apoptosis in breast cancer
stem cells: Molecular mechanisms. Mol Cancer. 12:1712013.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Deretic V, Saitoh T and Akira S: Autophagy
in infection, inflammation and immunity. Nat Rev Immunol.
13:722–737. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Piao Y, Gwon DH, Kang DW, Hwang TW, Shin
N, Kwon HH, Shin HJ, Yin Y, Kim JJ, Hong J, et al: TLR4-mediated
autophagic impairment contributes to neuropathic pain in chronic
constriction injury mice. Mol Brain. 11:112018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Weng W, Yao C, Poonit K, Zhou X, Sun C,
Zhang F and Yan H: Metformin relieves neuropathic pain after spinal
nerve ligation via autophagy flux stimulation. J Cell Mol Med.
23:1313–1324. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yin Y, Yi MH and Kim DW: Impaired
autophagy of GABAergic interneurons in neuropathic pain. Pain Res
Manag. 2018:91853682018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Dando I, Donadelli M, Costanzo C, Dalla
Pozza E, D'Alessandro A, Zolla L and Palmieri M: Cannabinoids
inhibit energetic metabolism and induce AMPK-dependent autophagy in
pancreatic cancer cells. Cell Death Dis. 4:e6642013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kimura T, Isaka Y and Yoshimori T:
Autophagy and kidney inflammation. Autophagy. 13:997–1003. 2017.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Chen ZH, Wu YF, Wang PL, Wu YP, Li ZY,
Zhao Y, Zhou JS, Zhu C, Cao C, Mao YY, et al: Autophagy is
essential for ultrafine particle-induced inflammation and mucus
hyperproduction in airway epithelium. Autophagy. 12:297–311. 2016.
View Article : Google Scholar : PubMed/NCBI
|