1
|
Sun K, Fan J and Han J: Ameliorating
effects of traditional Chinese medicine preparation, Chinese
materia medica and active compounds on ischemia/reperfusion-induced
cerebral microcirculatory disturbances and neuron damage. Acta
Pharm Sin B. 5:8–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen HS, Qi SH and Shen JG:
One-compound-multi-target: Combination prospect of natural
compounds with thrombolytic therapy in acute ischemic stroke. Curr
Neuropharmacol. 15:134–156. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cheng CY and Lee YC: Anti-inflammatory
effects of traditional chinese medicines against ischemic injury in
in vivo models of cerebral ischemia. Evid Based Complement Alternat
Med. 2016:57394342016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen XM, Chen HS, Xu MJ and Shen JG:
Targeting reactive nitrogen species: A promising therapeutic
strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol
Sin. 34:67–77. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hu Y, Deng H, Xu S and Zhang J: MicroRNAs
regulate mitochondrial function in cerebral ischemia-reperfusion
injury. Int J Mol Sci. 16:24895–24917. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang HY, Wang ZG, Lu XH, Kong XX and Xiao
J: Endoplasmic reticulum stress: Relevance and therapeutics in
central nervous system diseases. Mol Neurobiol. 51:1343–1352. 2015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Li JQ, Yu JT, Jiang T and Tan L:
Endoplasmic reticulum dysfunction in Alzheimer's disease. Mol
Neurobiol. 51:383–395. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lee AS: The ER chaperone and signaling
regulator GRP78/BIP as a monitor of endoplasmic reticulum stress.
Methods. 35:373–381. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gong L, Tang Y, An R, Lin M, Chen L and Du
J: RTN1-C mediates cerebral ischemia/reperfusion injury via ER
stress and mitochondria-associated apoptosis pathways. Cell Death
Dis. 8:e30802017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cao G, Zhou H, Jiang N, Han Y, Hu Y, Zhang
Y, Qi J, Kou J and Yu B: Yi Qi Fu Mai powder injection ameliorates
cerebral ischemia by inhibiting endoplasmic reticulum
stress-mediated neuronal apoptosis. Oxid Med Cell Longev.
2016:54932792016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lin YW, Chen TY, Hung C, Tai SH, Huang SY,
Chang CC, Hung HY and Lee EJ: Melatonin protects brain against
ischemia/reperfusion injury by attenuating endoplasmic reticulum
stress. Int J Mol Med. 42:182–192. 2018.PubMed/NCBI
|
12
|
Chaudhari N, Talwar P, Parimisetty A,
Lefebvre d'Hellencourt C and Ravanan P: A molecular web:
Endoplasmic reticulum stress, inflammation, and oxidative stress.
Front Cell Neurosci. 8:2132014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li X, Fang D, Cong X, Cao G, Cai H and Cai
B: Application of Fourier transform near-infrared spectroscopy
combined with high-performance liquid chromatography in rapid and
simultaneous determination of essential components in crude Radix
Scrophulariae. AAPS PharmSciTech. 13:1428–1435. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang CC, Gu WL, Wu XM, Li YM, Chen CX and
Huang XY: Active components from Radix Scrophulariae inhibits the
ventricular remodeling induced by hypertension in rats.
Springerplus. 5:3582016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li YM, Zeng HW, He X, Jiang YY, Jiang SH
and Zhu DY: Iridoid and phenylpropanoid glycosides of
Scrophularia ningpoensis inhibit the formation of LTB (4)
and platelet aggregation Ti Erh Chun i Ta Hsueh Pao. Acad J Sec Mil
Med Univ. 2:301–303. 1999.
|
16
|
Huang Q, Gong QY, Yao MH, Yu R and Shi NC:
Protective effect of Scrophularia ningpoensis extracts on
cerebral ischemia injury in rats. Chin J New Drugs Clini Remedies.
23:323–327. 2004.
|
17
|
Kim A, Im M and Jin YM: SRVF, a novel
herbal formula including scrophulariae radix and fructus viticis,
disrupts focal adhesion and causes detachment-induced apoptosis in
malignant cancer cells. Sci Rep. 7:127562017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ying Xl, Zhong XM, Xu MD, Chen MJ, Xiao
WX, Li GZ, Wang H and Huang Z: Neuro-protective effect of harpagide
on acute cerebral ischemic injury in mice and its mechanism
involving mitochondria. Chin Pharm J. 50:1026–1031. 2015.
|
19
|
Kilkenny C, Browne WJ, Cuthill IC, Emerson
M and Altman DG: Improving bioscience research reporting: The
ARRIVE guidelines for reporting animal research. PLoS Biol.
8:e10004122010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Leary S, Underwood W, Anthony R, Cartner
S, Corey D, Grandin T, Greenacre C, Gwaltney-Brant S, McCrackin MA,
Meyer R, et al: AVMA guidelines for the euthanasia of animals: 2013
edition. Am Vet Med Assoc. 2013.
|
21
|
Longa EZ, Weinstein PR, Carlson S and
Cummins R: Reversible middle cerebral artery occlusion without
craniectomy in rats. Stroke. 20:84–91. 1989. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lv MR, Li B, Wang MG, Meng FG, Yu JJ, Guo
F and Li Y: Activation of the PI3K-Akt pathway promotes
neuroprotection of the δ-opioid receptor agonist against cerebral
ischemia-reperfusion injury in rat models. Biomed Pharmacother.
93:230–237. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhai ZY and Feng J: Left-right asymmetry
influenced the infarct volume and neurological dysfunction
following focal middle cerebral artery occlusion in rats. Brain
Behav. 8:e011662018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu F, Schafer DP and McCullough LD: TTC,
fluoro-Jade B and NeuN staining confirm evolving phases of
infarction induced by middle cerebral artery occlusion. J Neurosci
Methods. 179:1–8. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Swanson RA, Morton MT, Tsao-Wu G, Savalos
RA, Davidson C and Sharp FR: A semiautomated method for measuring
brain infarct volume. J Cereb Blood Flow Metab. 10:290–293. 1990.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ya BL, Li HF, Wang HY, Wu F, Xin Q, Cheng
HJ, Li WJ, Lin N, Ba ZH, Zhang RJ, et al: 5-HMF attenuates striatum
oxidative damage via Nrf2/ARE signaling pathway following transient
global cerebral ischemia. Cell Stress Chaperones. 22:55–65. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Tyagi N, Qipshidze N, Munjal C, Vacek JC,
Metreveli N, Givvimani S and Tyagi SC: Tetrahydrocurcumin
ameliorates homocysteinylated cytochrome-c mediated autophagy in
hyperhomocysteinemia mice after cerebral ischemia. J Mol Neurosci.
47:128–138. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu P, Yang X, Hei C, Meli Y, Niu J, Sun T
and Li PA: Rapamycin reduced ischemic brain damage in diabetic
animals is Associated with suppressions of mTOR and ERK1/2
signaling. Int J Biol Sci. 12:1032–1040. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li W, Yang Y, Hu Z, Ling S and Fang M:
Neuroprotective effects of DAHP and Triptolide in focal cerebral
ischemia via apoptosis inhibition and PI3K/Akt/mTOR pathway
activation. Front Neuroanat. 9:482015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jiang CJ, Wang ZJ, Zhao YJ, Zhang ZY, Tao
JJ and Ma JY: Erythropoietin reduces apoptosis of brain tissue
cells in rats after cerebral ischemia/reperfusion injury: A
characteristic analysis using magnetic resonance imaging. Neural
Regen Res. 11:1450–1455. 2016.PubMed/NCBI
|
31
|
Janyou A, Wicha P, Jittiwat J, Suksamrarn
A, Tocharus C and Tocharus J: Dihydrocapsaicin attenuates blood
brain barrier and cerebral damage in focal cerebral
ischemia/reperfusion via oxidative stress and inflammatory. Sci
Rep. 7:105562017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2 (Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Villamil-Ortiz JG and Cardona-Gomez GP:
Comparative analysis of autophagy and tauopathy related markers in
cerebral ischemia and Alzheimer's disease animal models. Fron Aging
Neurosci. 7:842015.
|
34
|
Li XB, Ding MX, Ding CL, Li LL, Feng JZ
and Yu XJ: Toll-Like receptor 4 promotes the phosphorylation of
CRMP2 via the activation of Rho-kinase in MCAO rats. Mol Med Rep.
18:342–348. 2018.PubMed/NCBI
|
35
|
Caltagirone C, Cisari C, Schievano C, Di
Paola R, Cordaro M, Bruschetta G, Esposito E and Cuzzocrea S;
Stroke Study Group, : Co-ultramicronized
palmitoylethanolamide/luteolin in the treatment of cerebral
ischemia: From rodent to man. Transl Stroke Res. 7:54–69. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Ferlito M, Wang Q, Fulton WB, Colombani
PM, Marchionni L, Fox-Talbot K, Paolocci N and Steenbergen C:
Correction: Hydrogen sulfide increases survival during sepsis:
Protective effect of CHOP inhibition. J Immunol. 192:1806–1814.
2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Miao M, Yan X, Guo L and Shao S: Effects
of the Rabdosia rubescens total flavonoids on focal cerebral
ischemia reperfusion model in rats. Saudi Pharm J. 25:607–614.
2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jung SY, Kim KM, Cho S, Lim S, Lim C and
Kim YK: Effects of pretreatment with methanol extract of Peucedani
Radix on transient ischemic brain injury in mice. Chin Med.
12:30–40. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang C, Liu M, Pan Y, Bai B and Chen J:
Global gene expression profile of cerebral ischemia-reperfusion
injury in rat MCAO model. Oncotarget. 8:74607–74622. 2017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Caprio FZ and Sorond FA: Cerebrovascular
disease: Primary and secondary stroke prevention. Med Clin North
Am. 103:295–308. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xiao B, Chai Y, Lv S, Ye M, Wu M, Xie L,
Fan Y and Zhu X: Endothelial cell-derived exosomes protect SH-SY5Y
nerve cells against ischemia/reperfusion injury. Int J Mol Med.
40:1201–1209. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhao Q, Wang X, Chen A, Cheng X, Zhang G,
Sun J, Zhao Y, Huang Y and Zhu Y: Rhein protects against cerebral
ischemic-/reperfusion-induced oxidative stress and apoptosis in
rats. Int J Mol Med. 41:2802–2812. 2018.PubMed/NCBI
|
43
|
He F, Zhang N, Lv Y, Sun W and Chen H:
Low-dose lipopolysaccharide inhibits neuronal apoptosis induced by
cerebral ischemia/reperfusion injury via the PI3K/Akt/FoxO1
signaling pathway in rat. Mol Med Rep. 19:1443–1452.
2019.PubMed/NCBI
|
44
|
Chen S, Sun M, Zhao X, Yang Z, Liu W, Cao
J, Qiao Y, Luo X and Wen A: Neuroprotection of hydroxysafflor
yellow A in experimental cerebral ischemia/reperfusion injury via
metabolic inhibition of phenylalanine and mitochondrial biogenesis.
Mol Med Rep. 19:3009–3020. 2019.PubMed/NCBI
|
45
|
Hou Y, Wang Y, He Q, Li L, Xie H, Zhao Y
and Zhao J: Nrf2 inhibits NLRP3 inflammasome activation through
regulating Trx1/TXNIP complex in cerebral ischemia reperfusion
injury. Behav Brain Res. 336:32–39. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Su D, Ma J, Zhang Z, Tian Y and Shen B:
Protective effects of UCF-101 on cerebral ischemia-reperfusion
(CIR) is depended on the MAPK/p38/ERK signaling pathway. Cell Mol
Neurobiol. 36:907–914. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Shen X, Eichhorn T, Greten HJ and Efferth
T: Effects of Scrophularia ningpoensis hemsl. On inhibition
of proliferation, apoptosis induction and NF-κB signaling of
immortalized and cancer cell lines. Pharmaceuticals (Basel).
5:189–208. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Liang W, Lam WP, Tang HC, Leung PC and Yew
DT: Current evidence of Chinese herbal constituents with effects on
NMDA receptor blockade. Pharmaceuticals (Basel). 6:1039–1054. 2013.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang Q, An RD, Tian XC, Yang M, Li MH,
Lou J, Xu L and Dong Z: β-Caryophyllene pretreatment alleviates
focal cerebral ischemia-reperfusion injury by activating PI3K/Akt
signaling pathway. Neurochem Res. 42:1459–1469. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gong G, Xiang L, Yuan L, Hu L, Wu W, Cai
L, Yin L and Dong H: Protective effect of glycyrrhizin, a direct
HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced
inflammation, oxidative stress, and apoptosis in rats. PLoS One.
9:e894502014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang Y, Ren QY, Zhang X, Lu HL and Chen J:
Neuroprotective mechanisms of calycosin against focal cerebral
ischemia and reperfusion injury in rats. Cell Physiol Biochem.
45:537–546. 2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Liu B, Li F, Shi J, Yang D, Deng Y and
Gong Q: Gastrodin ameliorates subacute phase cerebral
ischemia-reperfusion injury by inhibiting inflammation and
apoptosis in rats. Mol Med Rep. 14:4144–4152. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Li X, Guo H, Zhao L, Wang B, Liu H, Yue L,
Bai H, Jiang H, Gao L, Feng D and Qu Y: Adiponectin attenuates
NADPH oxidase-mediated oxidative stress and neuronal damage induced
by cerebral ischemia-reperfusion injury. Biochim Biophys Acta Mol
Basis Dis. 1863:3265–3276. 2017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Song W, Guo F, Zhong H, Liu L, Yang R,
Wang Q and Xiong L: Therapeutic window of globular adiponectin
against cerebral ischemia in diabetic mice: The role of dynamic
alteration of adiponectin/adiponectin receptor expression. Sci Rep.
5:173102015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhao Y, Fang Y, Zhao H, Li J and Luo Y:
Chrysophanol inhibits endoplasmic reticulum stress in cerebral
ischemia and reperfusion mice. Eur J Pharmacol. 818:1–9. 2018.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Liu X, Zhao S, Liu F, Kang J, Xiao A, Li
F, Zhang C, Yan F, Zhao H, Luo M, et al: Remote ischemic
postconditioning alleviates cerebral ischemic injury by attenuating
endoplasmic reticulum stress-mediated apoptosis. Transl Stroke Res.
5:692–700. 2014. View Article : Google Scholar : PubMed/NCBI
|