1
|
Global overview of drug demand and supply.
UNODC 2019. Retrieved from, . https://wdr.unodc.org/wdr2019/prelaunch/WDR19_Booklet_2_DRUG_DEMAND.pdfSeptember
26–2019
|
2
|
Report on China's drug situation in 2018,
. http://www.nncc626.com/2019-06/17/c_1210161797.htmJune
17–2019
|
3
|
Clark L, Robbins TW, Ersche KD and
Sahakian BJ: Reflection impulsivity in current and former substance
users. Biol Psychiatry. 60:515–522. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Giuliano C, Robbins TW, Wille DR, Bullmore
ET and Everitt BJ: Attenuation of cocaine and heroin seeking by
µ-opioid receptor antagonism. Psychopharmacology (Berl).
227:137–147. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Schippers MC, Binnekade R, Schoffelmeer
AN, Pattij T and De Vries TJ: Unidirectional relationship between
heroin self-administration and impulsive decision-making in rats.
Psychopharmacology (Berl). 219:443–452. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
D'Souza MS: Glutamatergic transmission in
drug reward: Implications for drug addiction. Front Neurosci.
9:4042015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Huang YY, Kandel DB, Kandel ER and Levine
A: Nicotine primes the effect of cocaine on the induction of LTP in
the amygdala. Neuropharmacology. 74:126–134. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
van Huijstee AN and Mansvelder HD:
Glutamatergic synaptic plasticity in the mesocorticolimbic system
in addiction. Front Cell Neurosci. 8:4662015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cooper DC: The significance of action
potential bursting in the brain reward circuit. Neurochem Int.
41:333–340. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Scobie KN, Damez-Werno D, Sun H, Shao N,
Gancarz A, Panganiban CH, Dias C, Koo J, Caiafa P, Kaufman L, et
al: Essential role of poly(ADP-ribosyl)ation in cocaine action.
Proc Natl Acad Sci USA. 111:2005–2010. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rogers JL, Ghee S and See RE: The neural
circuitry underlying reinstatement of heroin-seeking behavior in an
animal model of relapse. Neuroscience. 151:579–588. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Schmidt ED, Voorn P, Binnekade R,
Schoffelmeer AN and De Vries TJ: Differential involvement of the
prelimbic cortex and striatum in conditioned heroin and sucrose
seeking following long-term extinction. Eur J Neurosci.
22:2347–2356. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Archer T, Beninger RJ, Palomo T and
Kostrzewa RM: Epigenetics and biomarkers in the staging of
neuropsychiatric disorders. Neurotox Res. 18:347–366. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Caffino L, Cassina C, Giannotti G, Orru A,
Moro F, Di Clemente A, Racagni G, Fumagalli F and Cervo L:
Short-term abstinence from cocaine self-administration, but not
passive cocaine infusion, elevates αCaMKII autophosphorylation in
the rat nucleus accumbens and medial prefrontal cortex. Int J
Neuropsychopharmacol. 17:323–329. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gipson CD, Reissner KJ, Kupchik YM, Smith
AC, Stankeviciute N, Hensley-Simon ME and Kalivas PW: Reinstatement
of nicotine seeking is mediated by glutamatergic plasticity. Proc
Natl Acad Sci USA. 110:9124–9129. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Van den Oever MC, Spijker S, Smit AB and
De Vries TJ: Prefrontal cortex plasticity mechanisms in drug
seeking and relapse. Neurosci Biobehav Rev. 35:276–284. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Li M, Liu WJ, Lu B, Wang YH and Liu JG:
Differential expression of Arc in the mesocorticolimbic system is
involved in drug and natural rewarding behavior in rats. Acta
Pharmacol Sin. 34:1013–1024. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Su Y, Shin J, Zhong C, Wang S,
Roychowdhury P, Lim J, Kim D, Ming GL and Song H: Neuronal activity
modifies the chromatin accessibility landscape in the adult brain.
Nat Neurosci. 20:476–483. 2017. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Peixoto L and Abel T: The role of histone
acetylation in memory formation and cognitive impairments.
Neuropsychopharmacology. 38:62–76. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Appelbaum PC: Reduced glycopeptide
susceptibility in methicillin-resistant Staphylococcus aureus
(MRSA). Int J Antimicrob Agents. 30:398–408. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Y, Lai J, Cui H, Zhu Y, Zhao B, Wang
W and Wei S: Inhibition of histone deacetylase in the basolateral
amygdala facilitates morphine context-associated memory formation
in rats. J Mol Neurosci. 55:269–278. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Egervari G, Landry J, Callens J, Fullard
JF, Roussos P, Keller E and Hurd YL: Striatal H3K27 acetylation
linked to glutamatergic gene dysregulation in human heroin abusers
holds promise as therapeutic target. Biol Psychiatry. 81:585–594.
2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Martin TA, Jayanthi S, McCoy MT, Brannock
C, Ladenheim B, Garrett T, Lehrmann E, Becker KG and Cadet JL:
Methamphetamine causes differential alterations in gene expression
and patterns of histone acetylation/hypoacetylation in the rat
nucleus accumbens. PLoS One. 7:e342362012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Biliński P, Wojtyła A, Kapka-Skrzypczak L,
Chwedorowicz R, Cyranka M and Studziński T: Epigenetic regulation
in drug addiction. Ann Agric Environ Med. 19:491–496.
2012.PubMed/NCBI
|
25
|
Taniguchi M, Carreira MB, Cooper YA,
Bobadilla AC, Heinsbroek JA, Koike N, Larson EB, Balmuth EA, Hughes
BW, Penrod RD, et al: HDAC5 and its target gene, Npas4, function in
the nucleus accumbens to regulate cocaine-conditioned behaviors.
Neuron. 96:130–144.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Taniguchi M, Carreira MB, Smith LN, Zirlin
BC, Neve RL and Cowan CW: Histone deacetylase 5 limits cocaine
reward through cAMP-induced nuclear import. Neuron. 73:108–120.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen WS, Xu WJ, Zhu HQ, Gao L, Lai MJ,
Zhang FQ, Zhou WH and Liu HF: Effects of histone deacetylase
inhibitor sodium butyrate on heroin seeking behavior in the nucleus
accumbens in rats. Brain Res. 1652:151–157. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Al Ameri M, Al Mansouri S, Al Maamari A
and Bahi A: The histone deacetylase (HDAC) inhibitor valproic acid
reduces ethanol consumption and ethanol-conditioned place
preference in rats. Brain Res. 1583:122–131. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang X, Sansam CG, Thom CS, Metzger D,
Evans JA, Nguyen PT and Roberts CW: Oncogenesis caused by loss of
the SNF5 tumor suppressor is dependent on activity of BRG1, the
ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res.
69:8094–8101. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Y, Zhang F, Tang S, Lai M, Hao W,
Zhang Y, Yang J and Zhou W: Lack of effect of habenula lesion on
heroin self-administration in rats. Neurosci Lett. 461:167–171.
2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang F, Zhou W, Tang S, Lai M, Liu H and
Yang G: Motivation of heroin-seeking elicited by drug-associated
cues is related to total amount of heroin exposure during
self-administration in rats. Pharmacol Biochem Behav. 79:291–298.
2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang F: SuperState: A computer program
for the control of operant behavioral experimentation. J Neurosci
Methods. 155:194–201. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Paxinos G and Watson C: The Rat Brain in
Stereotaxic Coordinates. 4th. Academic Press; San Diego: 1998,
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Yang HC, Chu SK, Huang CL, Kuo HW, Wang
SC, Liu SW, Ho IK and Liu YL: Genome-wide pharmacogenomic study on
methadone maintenance treatment identifies SNP rs17180299 and
multiple haplotypes on CYP2B6, SPON1, and GSG1L associated with
plasma concentrations of methadone R- and S-enantiomers in
heroin-dependent patients. PLoS Genet. 12:e10059102016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu Y, Wang Y, Lai J, Wei S, Zhang H, Yan
P, Li Y, Qiao X and Yin F: Dopamine D1 and D3 receptors modulate
heroin-induced cognitive impairment through opponent actions in
mice. Int J Neuropsychopharmacol. 20:257–268. 2017.PubMed/NCBI
|
37
|
Volkow ND and Morales M: The brain on
drugs: From reward to addiction. Cell. 162:712–725. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Y, Laumet G, Chen SR, Hittelman WN
and Pan HL: Pannexin-1 Up-regulation in the dorsal root ganglion
contributes to neuropathic pain development. J Biol Chem.
290:14647–14655. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wu M, Zhang Y, Wu NH and Shen YF: Histone
marks and chromatin remodelers on the regulation of neurogenin1
gene in RA induced neuronal differentiation of P19 cells. J Cell
Biochem. 107:264–271. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Seo S, Richardson GA and Kroll KL: The
SWI/SNF chromatin remodeling protein Brg1 is required for
vertebrate neurogenesis and mediates transactivation of Ngn and
NeuroD. Development. 132:105–115. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Dai YK, Ma Y, Chen K, Mi YJ, Fu HL, Cui DX
and Jin WL: A link between the nuclear-localized srGAP3 and the
SWI/SNF chromatin remodeler Brg1. Mol Cell Neurosci. 60:10–25.
2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Qiu Z and Ghosh A: A calcium-dependent
switch in a CREST-BRG1 complex regulates activity-dependent gene
expression. Neuron. 60:775–787. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu L, Hong Q, Chen X, Xu X, Liu H, Zhou W
and Duan S: H4K5 histone acetylation of BRG1 is associated with
heroin administration rather than addiction. Exp Ther Med.
12:1929–1933. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Martin JA, Caccamise A, Werner CT,
Viswanathan R, Polanco JJ, Stewart AF, Thomas SA, Sim FJ and Dietz
DM: A novel role for oligodendrocyte precursor cells (OPCs) and
Sox10 in mediating cellular and behavioral responses to heroin.
Neuropsychopharmacology. 43:1385–1394. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bondurand N, Kuhlbrodt K, Pingault V,
Enderich J, Sajus M, Tommerup N, Warburg M, Hennekam RC, Read AP,
Wegner M and Goossens M: A molecular analysis of the yemenite
deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes
different neurocristopathies. Hum Mol Genet. 8:1785–1789. 1999.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Maeno N, Takahashi N, Saito S, Ji X,
Ishihara R, Aoyama N, Branko A, Miura H, Ikeda M, Suzuki T, et al:
Association of SOX10 with schizophrenia in the Japanese population.
Psychiatr Genet. 17:227–231. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang ZJ, Martin JA, Mueller LE, Caccamise
A, Werner CT, Neve RL, Gancarz AM, Li JX and Dietz DM: BRG1 in the
nucleus accumbens regulates cocaine-seeking behavior. Biol
Psychiatry. 80:652–660. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wu S, Ge Y, Huang L, Liu H, Xue Y and Zhao
Y: BRG1, the ATPase subunit of SWI/SNF chromatin remodeling
complex, interacts with HDAC2 to modulate telomerase expression in
human cancer cells. Cell Cycle. 13:2869–2878. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Floresco SB: The nucleus accumbens: An
interface between cognition, emotion, and action. Annu Rev Psychol.
66:25–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Scofield MD, Heinsbroek JA, Gipson CD,
Kupchik YM, Spencer S, Smith AC, Roberts-Wolfe D and Kalivas PW:
The nucleus accumbens: Mechanisms of addiction across drug classes
reflect the importance of glutamate homeostasis. Pharmacol Rev.
68:816–871. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Koechlin E, Ody C and Kouneiher F: The
architecture of cognitive control in the human prefrontal cortex.
Science. 302:1181–1185. 2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kennerley SW and Walton ME: Decision
making and reward in frontal cortex: Complementary evidence from
neurophysiological and neuropsychological studies. Behav Neurosci.
125:297–317. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhao Y, Zhang J, Yang H, Cui D, Song J, Ma
Q, Luan W, Lai B, Ma L, Chen M and Zheng P: Memory retrieval in
addiction: A role for miR-105-mediated regulation of D1 receptors
in mPFC neurons projecting to the basolateral amygdala. BMC Biol.
15:1282017. View Article : Google Scholar : PubMed/NCBI
|