1
|
Li PK, Burdmann EA and Mehta RL: World
kidney day 2013: Acute kidney injury-global health alert. Am J
Kidney Dis. 61:359–363. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang X, Bonventre JV and Parrish AR: The
aging kidney: Increased susceptibility to nephrotoxicity. Int J Mol
Sci. 15:15358–15376. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lejay A, Fang F, John R, Van JA, Barr M,
Thaveau F, Chakfe N, Geny B and Scholey JW: Ischemia reperfusion
injury, ischemic conditioning and diabetes mellitus. J Mol Cell
Cardiol. 91:11–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Muroya Y, He X, Fan L, Wang S, Xu R, Fan F
and Roman RJ: Enhanced renal ischemia-reperfusion injury in aging
and diabetes. Am J Physiol Renal Physiol. 315:F1843–F1854. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Melin J, Hellberg O, Akyurek LM, Kallskog
O, Larsson E and Fellstrom BC: Ischemia causes rapidly progressive
nephropathy in the diabetic rat. Kidney Int. 52:985–991. 1997.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang Y, Hu F, Wen J, Wei X, Zeng Y, Sun
Y, Luo S and Sun L: Effects of sevoflurane on NF-κB and TNF-α
expression in renal ischemia-reperfusion diabetic rats. Inflamm
Res. 66:901–910. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shi S, Lei S, Tang C, Wang K and Xia Z:
Melatonin attenuates acute kidney ischemia/reperfusion injury in
diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling
pathway. Biosci Rep. 39:BSR201816142019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qiu Y, Wu Y, Meng M, Luo M, Zhao H, Sun H
and Gao S: GYY4137 protects against myocardial ischemia/reperfusion
injury via activation of the PHLPP-1/Akt/Nrf2 signaling pathway in
diabetic mice. J Surg Res. 225:29–39. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bravo R, Parra V, Gatica D, Rodriguez AE,
Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E,
et al: Endoplasmic reticulum and the unfolded protein response:
Dynamics and metabolic integration. Int Rev Cell Mol Biol.
301:215–290. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gao X, Fu L, Xiao M, Xu C, Sun L, Zhang T,
Zheng F and Mei C: The nephroprotective effect of
tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute
kidney injury by inhibiting endoplasmic reticulum stress. Basic
Clin Pharmacol Toxicol. 111:14–23. 2012.PubMed/NCBI
|
11
|
Gu Y, Huang F, Wang Y, Chen C, Wu S, Zhou
S, Hei Z and Yuan D: Connexin32 plays a crucial role in
ROS-mediated endoplasmic reticulum stress apoptosis signaling
pathway in ischemia reperfusion-induced acute kidney injury. J
Transl Med. 16:1172018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yan M, Shu S, Guo C, Tang C and Dong Z:
Endoplasmic reticulum stress in ischemic and nephrotoxic acute
kidney injury. Ann Med. 50:381–390. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu H, Wang L, Weng X, Chen H, Du Y, Diao
C, Chen Z and Liu X: Inhibition of Brd4 alleviates renal
ischemia/reperfusion injury-induced apoptosis and endoplasmic
reticulum stress by blocking FoxO4-mediated oxidative stress. Redox
Biol. 24:1011952019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Su M, Ren S, Zhong W and Han X: Impact of
propofol on renal ischemia/reperfusion endoplasmic reticulum
stress. Acta Cir Bras. 32:533–539. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu H, Fan Y, Sun H, Chen L and Man X:
Curcumin inhibits endoplasmic reticulum stress induced by cerebral
ischemia- reperfusion injury in rats. Exp Ther Med. 14:4047–4052.
2017.PubMed/NCBI
|
16
|
Pandey VK, Mathur A and Kakkar P: Emerging
role of Unfolded Protein Response (UPR) mediated proteotoxic
apoptosis in diabetes. Life Sci. 216:246–258. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Man SM, Karki R and Kanneganti TD:
Molecular mechanisms and functions of pyroptosis, inflammatory
caspases and inflammasomes in infectious diseases. Immunol Rev.
277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dong T, Liao D, Liu X and Lei X: Using
small molecules to dissect non-apoptotic programmed cell death:
Necroptosis, ferroptosis, and pyroptosis. Chembiochem.
16:2557–2561. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jorgensen I, Lopez JP, Laufer SA and Miao
EA: IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to
pore-induced intracellular traps following pyroptosis. Eur J
Immunol. 46:2761–2766. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang JR, Yao FH, Zhang JG, Ji ZY, Li KL,
Zhan J, Tong YN, Lin LR and He YN: Ischemia-reperfusion induces
renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J
Physiol Renal Physiol. 306:F75–F84. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li WF, Yang K, Zhu P, Zhao HQ, Song YH,
Liu KC and Huang WF: Genistein ameliorates
ischemia/reperfusion-induced renal injury in a SIRT1-dependent
manner. Nutrients. 9:E4032017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kelly GS: A review of the sirtuin system,
its clinical implications, and the potential role of dietary
activators like resveratrol: Part 2. Altern Med Rev. 15:313–328.
2010.PubMed/NCBI
|
23
|
Prola A, Pires Da Silva J, Guilbert A,
Lecru L, Piquereau J, Ribeiro M, Mateo P, Gressette M, Fortin D,
Boursier C, et al: SIRT1 protects the heart from ER stress-induced
cell death through eIF2α deacetylation. Cell Death Differ.
24:343–356. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Koka S, Aluri HS, Xi L, Lesnefsky EJ and
Kukreja RC: Chronic inhibition of phosphodiesterase 5 with
tadalafil attenuates mitochondrial dysfunction in type 2 diabetic
hearts: Potential role of NO/SIRT1/PGC-1α signaling. Am J Physiol
Heart Circ Physiol. 306:H1558–H1568. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai
M, Pei H, Wang X, Zhang H, Meng Q, et al: Melatonin
receptor-mediated protection against myocardial
ischemia/reperfusion injury: Role of SIRT1. J Pineal Res.
57:228–238. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xue R, Lei S, Xia ZY, Wu Y, Meng Q, Zhan
L, Su W, Liu H, Xu J, Liu Z, et al: Selective inhibition of PTEN
preserves ischaemic post-conditioning cardioprotection in
STZ-induced Type 1 diabetic rats: Role of the PI3K/Akt and
JAK2/STAT3 pathways. Clin Sci (Lond). 130:377–392. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang W, Luo J, Yang F, Wang Y, Yin Y,
Strom A, Gustafsson JÅ and Guan X: BRCA1 inhibits AR-mediated
proliferation of breast cancer cells through the activation of
SIRT1. Sci Rep. 6:220342016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sun J, Guo E, Yang J, Yang Y, Liu S, Hu J,
Jiang X, Dirsch O, Dahmen U, Dong W and Liu A: Carbon monoxide
ameliorates hepatic ischemia/reperfusion injury via sirtuin
1-mediated deacetylation of high-mobility group box 1 in rats.
Liver Transpl. 23:510–526. 2017. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Xie Y, Jiang D, Xiao J, Fu C, Zhang Z, Ye
Z and Zhang X: Ischemic preconditioning attenuates
ischemia/reperfusion-induced kidney injury by activating autophagy
via the SGK1 signaling pathway. Cell Death Dis. 9:3382018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang L, Liu X, Chen H, Chen Z, Weng X, Qiu
T and Liu L: Effect of picroside II on apoptosis induced by renal
ischemia/reperfusion injury in rats. Exp Ther Med. 9:817–822. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng
YL, Cheng PW, Li CY and Li CJ: Current mechanistic concepts in
ischemia and reperfusion injury. Cell Physiol Biochem.
46:1650–1667. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Melin J, Hellberg O and Fellström B:
Hyperglycaemia and renal ischaemia-reperfusion injury. Nephrol Dial
Transplant. 18:460–462. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kumaş M, Eşrefoğlu M, Karataş E, Duymaç N,
Kanbay S, Ergün IS, Üyüklü M and Koçyiğit A: Investigation of
dose-dependent effects of berberine against renal
ischemia/reperfusion injury in experimental diabetic rats.
Nefrologia. 39:411–423. 2019.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
34
|
Abu-Saleh N, Awad H, Khamaisi M, Armaly Z,
Karram T, Heyman SN, Kaballa A, Ichimura T, Holman J and Abassi Z:
Nephroprotective effects of TVP1022, a non-MAO inhibitor S-isomer
of rasagiline, in an experimental model of diabetic renal ischemic
injury. Am J Physiol Renal Physiol. 306:F24–F33. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Grubisha O, Smith BC and Denu JM: Small
molecule regulation of Sir2 protein deacetylases. FEBS J.
272:4607–4616. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin
C, Kim SH, Mostoslavsky R, Alt FW, Wu Z and Puigserver P: Metabolic
control of muscle mitochondrial function and fatty acid oxidation
through SIRT1/PGC-1alpha. EMBO J. 26:1913–1923. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bordone L, Motta MC, Picard F, Robinson A,
Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A,
et al: Sirt1 regulates insulin secretion by repressing UCP2 in
pancreatic beta cells. PLoS Biol. 4:e312006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kitada M and Koya D: SIRT1 in Type 2
diabetes: Mechanisms and therapeutic potential. Diabetes Metab J.
37:315–325. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yu L, Liang H, Dong X, Zhao G, Jin Z, Zhai
M, Yang Y, Chen W, Liu J, Yi W, et al: Reduced silent information
regulator 1 signaling exacerbates myocardial ischemia-reperfusion
injury in type 2 diabetic rats and the protective effect of
melatonin. J Pineal Res. 59:376–390. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Xu J, Zhou Q, Xu W and Cai L: Endoplasmic
reticulum stress and diabetic cardiomyopathy. Exp Diabetes Res.
2012:8279712012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Guo W, Jiang T, Lian C, Wang H, Zheng Q
and Ma H: QKI deficiency promotes FoxO1 mediated nitrosative stress
and endoplasmic reticulum stress contributing to increased
vulnerability to ischemic injury in diabetic heart. J Mol Cell
Cardiol. 75:131–140. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Guo R, Liu W, Liu B, Zhang B, Li W and Xu
Y: SIRT1 suppresses cardiomyocyte apoptosis in diabetic
cardiomyopathy: An insight into endoplasmic reticulum stress
response mechanism. Int J Cardiol. 191:36–45. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chong ZZ, Wang S, Shang YC and Maiese K:
Targeting cardiovascular disease with novel SIRT1 pathways. Future
Cardiol. 8:89–100. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Luo XY, Qu SL, Tang ZH, Zhang Y, Liu MH,
Peng J, Tang H, Yu KL, Zhang C, Ren Z and Jiang ZS: SIRT1 in
cardiovascular aging. Clin Chim Acta. 437:106–114. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bergsbaken T and Cookson BT: Macrophage
activation redirects yersinia-infected host cell death from
apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog.
3:e1612007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Fantuzzi G and Dinarello CA:
Interleukin-18 and interleukin-1 beta: Two cytokine substrates for
ICE (caspase-1). J Clin Immunol. 19:1–11. 1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chou X, Ding F, Zhang X, Ding X, Gao H and
Wu Q: Sirtuin-1 ameliorates cadmium-induced endoplasmic reticulum
stress and pyroptosis through XBP-1s deacetylation in human renal
tubular epithelial cells. Arch Toxicol. 93:965–986. 2019.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Qiu Z, Lei S, Zhao B, Wu Y, Su W, Liu M,
Meng Q, Zhou B, Leng Y and Xia ZY: NLRP3 Inflammasome
activation-mediated pyroptosis aggravates myocardial
ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev.
2017:97432802017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang L, Chen Z, Weng X, Wang M, Du Y and
Liu X: Combined ischemic postconditioning and ozone
postconditioning provides synergistic protection against renal
ischemia and reperfusion injury through inhibiting pyroptosis.
Urology. 123:296.e1–296.e8. 2019. View Article : Google Scholar
|
50
|
Yang CC, Yao CA, Yang JC and Chien CT:
Sialic acid rescues repurified lipopolysaccharide-induced acute
renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic
reticulum stress, apoptosis, autophagy, and pyroptosis signaling.
Toxicol Sci. 141:155–165. 2014. View Article : Google Scholar : PubMed/NCBI
|