Coculture with bone marrow‑derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide‑stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin‑1 modulating the Toll‑like receptor‑4 signal pathway

  • Authors:
    • Xu‑Xin Chen
    • Lu Tang
    • Zhi‑Hai Han
    • Wen‑Jing Wang
    • Ji‑Guang Meng
  • View Affiliations

  • Published online on: January 8, 2019     https://doi.org/10.3892/mmr.2019.9836
  • Pages: 1891-1902
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Acute lung injury (ALI) is a common, costly and potentially lethal disease with characteristics of alveolar‑capillary membrane disruption, pulmonary edema and impaired gas exchange due to increased apoptosis and pulmonary inflammation. There is no effective and specific therapy for ALI; however, mesenchymal stem cells (MSCs) have been demonstrated to be a potential option. Lipopolysaccharide (LPS) is a highly proinflammatory molecule that is used to mimic an in vivo inflammatory and damaged state in vitro. The present study investigated the effect of bone marrow‑derived MSCs on an LPS‑induced alveolar epithelial cell (A549 cell line) injury and its underlying mechanisms by a Transwell system. It was identified that a high LPS concentration caused a decrease in cell viability, increases in apoptosis, inflammatory cytokine release and NF‑κB activity, disruption of the caspase‑3/Bcl‑2 ratio, upregulation of Toll‑like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and toll‑interleukin‑1 receptor domain‑containing adaptor inducing interferon (TRIF) expression, and facilitation of TLR4/MyD88 and TLR4/TRIF complex formation in A549 cells. Coculture with MSCs attenuated all of these activities induced by LPS in A549 cells. In addition, an increased level of keratinocyte growth factor (KGF) and angiopoietin‑1 (ANGPT1) secretion from MSCs was observed under inflammatory stimulation. KGF and/or ANGPT1 neutralizing antibodies diminished the beneficial effect of MSC conditioned medium. These data suggest that MSCs alleviate inflammatory damage and cellular apoptosis induced by LPS in A549 cells by modulating TLR4 signals. These changes may be partly associated with an increased secretion of KGF and ANGPT1 from MSCs under inflammatory conditions. These data provide the basis for development of MSC‑based therapies for ALI.
View Figures
View References

Related Articles

Journal Cover

March-2019
Volume 19 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Chen XX, Tang L, Han ZH, Wang WJ and Meng JG: Coculture with bone marrow‑derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide‑stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin‑1 modulating the Toll‑like receptor‑4 signal pathway. Mol Med Rep 19: 1891-1902, 2019.
APA
Chen, X., Tang, L., Han, Z., Wang, W., & Meng, J. (2019). Coculture with bone marrow‑derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide‑stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin‑1 modulating the Toll‑like receptor‑4 signal pathway. Molecular Medicine Reports, 19, 1891-1902. https://doi.org/10.3892/mmr.2019.9836
MLA
Chen, X., Tang, L., Han, Z., Wang, W., Meng, J."Coculture with bone marrow‑derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide‑stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin‑1 modulating the Toll‑like receptor‑4 signal pathway". Molecular Medicine Reports 19.3 (2019): 1891-1902.
Chicago
Chen, X., Tang, L., Han, Z., Wang, W., Meng, J."Coculture with bone marrow‑derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide‑stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin‑1 modulating the Toll‑like receptor‑4 signal pathway". Molecular Medicine Reports 19, no. 3 (2019): 1891-1902. https://doi.org/10.3892/mmr.2019.9836