1
|
Kilcline C and Frieden IJ: Infantile
hemangiomas: How common are they? A systematic review of the
medical literature. Pediatr Dermatol. 25:168–173. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Munden A, Butschek R, Tom WL, Marshall JS,
Poeltler DM, Krohne SE, Alió AB, Ritter M, Friedlander DF,
Catanzarite V, et al: Prospective study of infantile haemangiomas:
Incidence, clinical characteristics and association with placental
anomalies. Br J Dermatol. 170:907–913. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pandey A, Gangopadhyay AN and Upadhyay VD:
Evaluation and management of infantile hemangioma: An overview.
Ostomy Wound Manage. 54:16–18, 20, 22–26, 28–29. 2008.PubMed/NCBI
|
4
|
Khan ZA, Boscolo E, Picard A, Psutka S,
Melero-Martin JM, Bartch TC, Mulliken JB and Bischoff J:
Multipotential stem cells recapitulate human infantile hemangioma
in immunodeficient mice. J Clin Invest. 118:2592–2599.
2008.PubMed/NCBI
|
5
|
Roach EE, Chakrabarti R, Park NI, Keats
EC, Yip J, Chan NG and Khan ZA: Intrinsic regulation of hemangioma
involution by platelet-derived growth factor. Cell Death Dis.
3:e3282012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao P, Deng Y, Gu P, Wang Y, Zhou H, Hu
Y, Chen P and Fan X: Insulin-like growth factor 1 promotes the
proliferation and adipogenesis of orbital adipose-derived stromal
cells in thyroid-associated ophthalmopathy. Exp Eye Res. 107:65–73.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Laviola L, Natalicchio A and Giorgino F:
The IGF-I signaling pathway. Curr Pharm Des. 13:663–669. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Garten A, Schuster S and Kiess W: The
insulin-like growth factors in adipogenesis and obesity. Endocrinol
Metab Clin North Am. 41:283–295, v-vi. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen Q, Shou P, Zheng C, Jiang M, Cao G,
Yang Q, Cao J, Xie N, Velletri T, Zhang X, et al: Fate decision of
mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death
Differ. 23:1128–1139. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
James AW: Review of signaling pathways
governing MSC osteogenic and adipogenic differentiation.
Scientifica (Cairo). 2013:6847362013.PubMed/NCBI
|
11
|
Tontonoz P, Hu E and Spiegelman BM:
Regulation of adipocyte gene expression and differentiation by
peroxisome proliferator activated receptor gamma. Curr Opin Genet
Dev. 5:571–576. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Scavo LM, Karas M, Murray M and Leroith D:
Insulin-like growth factor-I stimulates both cell growth and
lipogenesis during differentiation of human mesenchymal stem cells
into adipocytes. J Clin Endocrinol Metab. 89:3543–3553. 2004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu Y, Wylie-Sears J, Boscolo E, Mulliken
JB and Bischoff J: Genomic imprinting of IGF2 is maintained in
infantile hemangioma despite its high level of expression. Mol Med.
10:117–123. 2004.PubMed/NCBI
|
14
|
Yu Y, Fuhr J, Boye E, Gyorffy S, Soker S,
Atala A, Mulliken JB and Bischoff J: Mesenchymal stem cells and
adipogenesis in hemangioma involution. Stem Cells. 24:1605–1612.
2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kubota N, Terauchi Y, Miki H, Tamemoto H,
Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, et
al: PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy
and insulin resistance. Mol Cell. 4:597–609. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Siersbaek R, Nielsen R and Mandrup S:
PPARgamma in adipocyte differentiation and metabolism-novel
insights from genome-wide studies. FEBS Lett. 584:3242–3249. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang C, Zhang X, Ma L, Peng F, Huang J
and Han H: Thalidomide inhibits adipogenesis of orbital fibroblasts
in Graves' ophthalmopathy. Endocrine. 41:248–255. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Boney CM, Gruppuso PA, Faris RA and
Frackelton AR Jr: The critical role of Shc in insulin-like growth
factor-I-mediated mitogenesis and differentiation in 3T3-L1
preadipocytes. Mol Endocrinol. 14:805–813. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hers I: Insulin-like growth factor-1
potentiates platelet activation via the IRS/PI3Kalpha pathway.
Blood. 110:4243–4252. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Boney CM, Smith RM and Gruppuso PA:
Modulation of insulin-like growth factor I mitogenic signaling in
3T3-L1 preadipocyte differentiation. Endocrinology. 139:1638–1644.
1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Boney CM, Sekimoto H, Gruppuso PA and
Frackelton AR Jr: Src family tyrosine kinases participate in
insulin-like growth factor I mitogenic signaling in 3T3-L1 cells.
Cell Growth Differ. 12:379–386. 2001.PubMed/NCBI
|
22
|
Smith TJ: Insulin-like growth factor-I
regulation of immune function: A potential therapeutic target in
autoimmune diseases? Pharmacol Rev. 62:199–236. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Peng XD, Xu PZ, Chen ML, Hahn-Windgassen
A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman
KG and Hay N: Dwarfism, impaired skin development, skeletal muscle
atrophy, delayed bone development, and impeded adipogenesis in mice
lacking Akt1 and Akt2. Genes Dev. 17:1352–1365. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu J and Liao K: Protein kinase B/AKT 1
plays a pivotal role in insulin-like growth factor-1 receptor
signaling induced 3T3-L1 adipocyte differentiation. J Biol Chem.
279:35914–35922. 2004. View Article : Google Scholar : PubMed/NCBI
|