1
|
Wang W, Zhu J, Lyu F, Panigrahy D, Ferrara
KW, Hammock B and Zhang G: ω-3 polyunsaturated fatty acids-derived
lipid metabolites on angiogenesis, inflammation and cancer.
Prostaglandins Other Lipid Mediat. 113-115:13–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Niki E: Biomarkers of lipid peroxidation
in clinical material. Biochim Biophys Acta. 1840:809–817. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Calder PC: Polyunsaturated fatty acids and
inflammation. Biochem Soc Trans. 33:423–427. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zajdel A, Wilczok A, Chodurek E, Gruchlik
A and Dzierzewicz Z: Polyunsaturated fatty acids inhibit melanoma
cell growth in vitro. Acta Pol Pharm. 70:365–369. 2013.PubMed/NCBI
|
5
|
Yee LD, Young DC, Rosol TJ, Vanbuskirk AM
and Clinton SK: Dietary (n-3) polyunsaturated fatty acids inhibit
HER-2/neu-induced breast cancer in mice independently of the
PPARgamma ligand rosiglitazone. J Nutr. 135:983–988. 2005.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Notarnicola M, Tutino V, De Nunzio V,
Dituri F, Caruso MG and Giannelli G: Dietary ω-3 polyunsaturated
fatty acids inhibit tumor growth in transgenic ApcMin/+ mice,
correlating with CB1 receptor Up-Regul. Int J Mol Sci. 18(pii):
E4852017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Notarnicola M, Messa C, Refolo MG, Tutino
V, Miccolis A and Caruso MG: Polyunsaturated fatty acids reduce
fatty acid synthase and hydroxy-methyl-glutaryl CoA-reductase gene
expression and promote apoptosis in HepG2 cell line. Lipids Health
Dis. 10:102011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yin Y, Sui C, Meng F, Ma P and Jiang Y:
The omega-3 polyunsaturated fatty acid docosahexaenoic acid
inhibits proliferation and progression of non-small cell lung
cancer cells through the reactive oxygen species-mediated
inactivation of the PI3K/Akt pathway. Lipids Health Dis. 16:872017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
D'Eliseo D and Velotti F: Omega-3 fatty
acids and cancer cell cytotoxicity: Implications for multi-targeted
cancer therapy. J Clin Med. 5(pii): E152016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pizato N, Luzete BC, Kiffer LFMV, Corrêa
LH, de Oliveira Santos I, Assumpção JAF, Ito MK and Magalhães KG:
Omega-3 docosahexaenoic acid induces pyroptosis cell death in
triple-negative breast cancer cells. Sci Rep. 8:19522018.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Mansara PP, Deshpande RA, Vaidya MM and
Kaul-Ghanekar R: Differential ratios of omega fatty acids
(AA/EPA+DHA) modulate growth, lipid peroxidation and expression of
tumor regulatory MARBPs in breast cancer cell lines MCF7 and
MDA-MB-231. PLoS One. 10:e01365422015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mu YM, Yanase T, Nishi Y, Tanaka A, Saito
M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K and Nawata H:
Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in
human granulosa cells. Endocrinology. 142:3590–3597. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang Y, Xue R, Zhang Z, Yang X and Shi H:
Palmitic and linoleic acids induce ER stress and apoptosis in
hepatoma cells. Lipids Health Dis. 11:12012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Murray M, Dyari HR, Allison SE and Rawling
T: Lipid analogues as potential drugs for the regulation of
mitochondrial cell death. Br J Pharmacol. 171:2051–2066. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Bochkov VN, Oskolkova OV, Birukov KG,
Levonen AL, Binder CJ and Stöckl J: Generation and biological
activities of oxidized phospholipids. Antioxid Redox Signal.
12:1009–1059. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Miller YI and Shyy JY: Context-dependent
role of oxidized lipids and lipoproteins in inflammation. Trends
Endocrinol Metab. 28:143–152. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Clay CE, Monjazeb A, Thorburn J, Chilton
FH and High KP: 15-Deoxy-delta12,14-prostaglandin J2-induced
apoptosis does not require PPARgamma in breast cancer cells. J
Lipid Res. 43:1818–1828. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen R, Yang L and McIntyre TM: Cytotoxic
phospholipid oxidation products. Cell death from mitochondrial
damage and the intrinsic caspase cascade. J Biol Chem.
282:24842–24850. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang L, Gill R, Pedersen TL, Higgins LJ,
Newman JW and Rutledge JC: Triglyceride-rich lipoprotein lipolysis
releases neutral and oxidized FFAs that induce endothelial cell
inflammation. J Lipid Res. 50:204–213. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu X, Shibata T, Hisaka S, Kawai Y and
Osawa T: DHA hydroperoxides as a potential inducer of neuronal cell
death: A mitochondrial dysfunction-mediated pathway. J Clin Biochem
Nutr. 43:26–33. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lim SY, Jang JH, Na HK, Lu SC, Rahman I
and Surh YJ: 15-Deoxy-Delta12,14-prostaglandin J(2) protects
against nitrosative PC12 cell death through up-regulation of
intracellular glutathione synthesis. J Biol Chem. 279:46263–46270.
2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gao B, Han YH, Wang L, Lin YJ, Sun Z, Lu
WG, Hu YQ, Li JQ, Lin XS, Liu BH, et al: Eicosapentaenoic acid
attenuates dexamethasome-induced apoptosis by inducing adaptive
autophagy via GPR120 in murine bone marrow-derived mesenchymal stem
cells. Cell Death Dis. 7:e22352016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yeh A, Kruse SE, Marcinek DJ and Gallagher
EP: Effect of omega-3 fatty acid oxidation products on the cellular
and mitochondrial toxicity of BDE 47. Toxicol In Vitro. 29:672–680.
2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Haeiwa H, Fujita T, Saitoh Y and Miwa N:
Oleic acid promotes adaptability against oxidative stress in 3T3-L1
cells through lipohormesis. Mol Cell Biochem. 386:73–83. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Iuchi K, Imoto A, Kamimura N, Nishimaki K,
Ichimiya H, Yokota T and Ohta S: Molecular hydrogen regulates gene
expression by modifying the free radical chain reaction-dependent
generation of oxidized phospholipid mediators. Sci Rep.
6:189712016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Abdelmagid SA, Clarke SE, Nielsen DE,
Badawi A, El-Sohemy A, Mutch DM and Ma DW: Comprehensive profiling
of plasma fatty acid concentrations in young healthy Canadian
adults. PLoS One. 10:e01161952015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Eguchi Y, Shimizu S and Tsujimoto Y:
Intracellular ATP levels determine cell death fate by apoptosis or
necrosis. Cancer Res. 57:1835–1840. 1997.PubMed/NCBI
|
28
|
Schley PD, Jijon HB, Robinson LE and Field
CJ: Mechanisms of omega-3 fatty acid-induced growth inhibition in
MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat.
92:187–195. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Perluigi M, Coccia R and Butterfield DA:
4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and
neurodegenerative diseases: A toxic combination illuminated by
redox proteomics studies. Antioxid Redox Signal. 17:1590–1609.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Milne GL, Yin H, Hardy KD, Davies SS and
Roberts LJ II: Isoprostane generation and function. Chem Rev.
111:5973–5996. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Usatyuk PV and Natarajan V:
Hydroxyalkenals and oxidized phospholipids modulation of
endothelial cytoskeleton, focal adhesion and adherens junction
proteins in regulating endothelial barrier function. Microvasc Res.
83:45–55. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Esterbauer H, Schaur RJ and Zollner H:
Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and
related aldehydes. Free Radic Biol Med. 11:81–128. 1991. View Article : Google Scholar : PubMed/NCBI
|
33
|
Meilhac O, Zhou M, Santanam N and
Parthasarathy S: Lipid peroxides induce expression of catalase in
cultured vascular cells. J Lipid Res. 41:1205–1213. 2000.PubMed/NCBI
|
34
|
Nourooz-Zadeh J, Liu EH, Anggård E and
Halliwell B: F4-isoprostanes: A novel class of prostanoids formed
during peroxidation of docosahexaenoic acid (DHA). Biochem Biophys
Res Commun. 242:338–344. 1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Majkova Z, Layne J, Sunkara M, Morris AJ,
Toborek M and Hennig B: Omega-3 fatty acid oxidation products
prevent vascular endothelial cell activation by coplanar
polychlorinated biphenyls. Toxicol Appl Pharmacol. 251:41–49. 2011.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Martínez B, Pérez-Castillo A and Santos A:
The mitochondrial respiratory complex I is a target for
15-deoxy-delta12,14-prostaglandin J2 action. J Lipid Res.
46:736–743. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kang KS, Wang P, Yamabe N, Fukui M, Jay T
and Zhu BT: Docosahexaenoic acid induces apoptosis in MCF-7 cells
in vitro and in vivo via reactive oxygen species formation and
caspase 8 activation. PLoS One. 5:e102962010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yun EJ, Song KS, Shin S, Kim S, Heo JY,
Kweon GR, Wu T, Park JI and Lim K: Docosahexaenoic acid suppresses
breast cancer cell metastasis by targeting
matrix-metalloproteinases. Oncotarget. 7:49961–49971. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Dwarakanath RS, Sahar S, Reddy MA,
Castanotto D, Rossi JJ and Natarajan R: Regulation of monocyte
chemoattractant protein-1 by the oxidized lipid,
13-hydroperoxyoctadecadienoic acid, in vascular smooth muscle cells
via nuclear factor-kappa B (NF-kappa B). J Mol Cell Cardiol.
36:585–595. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Timucin AC and Basaga H: Pro-apoptotic
effects of lipid oxidation products: HNE at the crossroads of NF-κB
pathway and anti-apoptotic Bcl-2. Free Radic Biol Med. 111:209–218.
2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yadav UC and Ramana KV: Regulation of
NF-κB-induced inflammatory signaling by lipid peroxidation-derived
aldehydes. Oxid Med Cell Longev. 2013:6905452013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tsujimoto Y: Cell death regulation by the
Bcl-2 protein family in the mitochondria. J Cell Physiol.
195:158–167. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shimizu S and Tsujimoto Y: Proapoptotic
BH3-only Bcl-2 family members induce cytochrome c release, but not
mitochondrial membrane potential loss, and do not directly modulate
voltage-dependent anion channel activity. Proc Natl Acad Sci USA.
97:577–582. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hill BG, Haberzettl P, Ahmed Y, Srivastava
S and Bhatnagar A: Unsaturated lipid peroxidation-derived aldehydes
activate autophagy in vascular smooth-muscle cells. Biochem J.
410:525–534. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun
X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death
Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yotsumoto S, Muroi Y, Chiba T, Ohmura R,
Yoneyama M, Magarisawa M, Dodo K, Terayama N, Sodeoka M, Aoyagi R,
et al: Hyperoxidation of ether-linked phospholipids accelerates
neutrophil extracellular trap formation. Sci Rep. 7:160262017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Parisi LR, Morrow LM, Visser MB and
Atilla-Gokcumen GE: Turning the spotlight on lipids in
non-apoptotic cell death. ACS Chem Biol. 13:506–515. 2018.
View Article : Google Scholar : PubMed/NCBI
|