1
|
Weeden CE, Ah-Cann C, Holik AZ, Pasquet J,
Garnier JM, Merino D, Lessene G and Asselin-Labat ML: Dual
inhibition of BCL-XL and MCL-1 is required to induce tumour
regression in lung squamous cell carcinomas sensitive to FGFR
inhibition. Oncogene. 37:4475–4488. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Devarakonda S, Morgensztern D and Govindan
R: Genomic alterations in lung adenocarcinoma. Lancet Oncol.
16:e342–e351. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang D, Chen Z, Wang DC and Wang X:
Regulatory T cells and potential inmmunotherapeutic targets in lung
cancer. Cancer Metastasis Rev. 34:277–290. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang W, Fan J, Chen Q, Lei C, Qiao B and
Liu Q: SPP1 and AGER as potential prognostic biomarkers for lung
adenocarcinoma. Oncol Lett. 15:7028–7036. 2018.PubMed/NCBI
|
5
|
Wang PS, Chou CH, Lin CH, Yao YC, Cheng
HC, Li HY, Chuang YC, Yang CN, Ger LP, Chen YC, et al: A novel long
non-coding RNA linc-ZNF469-3 promotes lung metastasis through
miR-574-5p-ZEB1 axis in triple negative breast cancer. Oncogene.
37:4662–4678. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nouri M, Ratther E, Stylianou N, Nelson
CC, Hollier BG and Williams ED: Androgen-targeted therapy-induced
epithelial mesenchymal plasticity and neuroendocrine
transdifferentiation in prostate cancer: An opportunity for
intervention. Front Oncol. 4:3702014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ingthorsson S, Andersen K, Hilmarsdottir
B, Maelandsmo GM, Magnusson MK and Gudjonsson T: HER2 induced EMT
and tumorigenicity in breast epithelial progenitor cells is
inhibited by coexpression of EGFR. Oncogene. 35:4244–4255. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Zhao Z, Liu H, Hou J, Li T, Du X, Zhao X,
Xu W, Xu W and Chang J: Tumor Protein D52 (TPD52) inhibits growth
and metastasis in renal cell carcinoma cells through the PI3K/Akt
signaling pathway. Oncol Res. 25:773–779. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen H, Yang T, Wang MC, Chen DQ, Yang Y
and Zhao YY: Novel RAS inhibitor 25-O-methylalisol F attenuates
epithelial-to-mesenchymal transition and tubulo-interstitial
fibrosis by selectively inhibiting TGF-β-mediated Smad3
phosphorylation. Phytomedicine. 42:207–218. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kim TW, Lee SY, Kim M, Cheon C, Jang BH,
Shin YC and Ko SG: DSGOST regulates resistance via activation of
autophagy in gastric cancer. Cell Death Dis. 9:6492018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liang W, Lai Y, Zhu M, Huang S, Feng W and
Gu X: Combretastatin A4 regulates proliferation, migration,
invasion, and apoptosis of thyroid cancer cells via PI3K/Akt
signaling pathway. Med Sci Monit. 22:4911–4917. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li X, Chen H, Liu Z, Ye Z, Gou S and Wang
C: Overexpression of MIST1 reverses the epithelial-mesenchymal
transition and reduces the tumorigenicity of pancreatic cancer
cells via the Snail/E-cadherin pathway. Cancer Lett. 431:96–104.
2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang X, He J, Zhao X, Qi T, Zhang T and
Kong C: Syndecan-1 suppresses epithelial-mesenchymal transition and
migration in human oral cancer cells. Oncol Rep. 39:1835–1842.
2018.PubMed/NCBI
|
15
|
Wang H, Chen Y and Wu G: SDHB deficiency
promotes TGFβ-mediated invasion and metastasis of colorectal cancer
through transcriptional repression complex SNAIL1-SMAD3/4. Transl
Oncol. 9:512–520. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhai Q, Wang L, Zhao P and Li T: Role of
citrullination modification catalyzed by peptidylarginine deiminase
4 in gene transcriptional regulation. Acta Biochim Biophys Sin
(Shanghai). 49:567–572. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tanikawa C, Espinosa M, Suzuki A, Masuda
K, Yamamoto K, Tsuchiya E, Ueda K, Daigo Y, Nakamura Y and Matsuda
K: Regulation of histone modification and chromatin structure by
the p53-PADI4 pathway. Nat Commun. 3:6762012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Stadler SC, Vincent CT, Fedorov VD,
Patsialou A, Cherrington BD, Wakshlag JJ, Mohanan S, Zee BM, Zhang
X, Garcia BA, et al: Dysregulation of PAD4-mediated citrullination
of nuclear GSK3β activates TGF-β signaling and induces
epithelial-to-mesenchymal transition in breast cancer cells. Proc
Natl Acad Sci USA. 110:11851–11856. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vincent T, Neve EP, Johnson JR, Kukalev A,
Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL,
et al: A SNAIL1-SMAD3/4 transcriptional repressor complex promotes
TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol.
11:943–950. 2009. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Tsoukalas N, Aravantinou-Fatorou E, Tolia
M, Giaginis C, Galanopoulos M, Kiakou M, Kostakis ID, Dana E,
Vamvakaris I, Korogiannos A, et al: Epithelial-mesenchymal
transition in non small-cell lung cancer. Anticancer Res.
37:1773–1778. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu YF, Ge FJ, Han B, Yang XQ, Su H, Zhao
AC, Zhao MH, Yang YB and Yang J: High-mobility group box 1
expression and lymph node metastasis in intrahepatic
cholangiocarcinoma. World J Gastroenterol. 21:3256–3265. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang Y, Wu N, Sun D, Sun H, Tong D, Liu D,
Pang B, Li S, Wei J, Dai J, et al: NUBPL, a novel
metastasis-related gene, promotes colorectal carcinoma cell
motility by inducing epithelial-mesenchymal transition. Cancer Sci.
108:1169–1176. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kolodziej S, Kuvardina ON, Oellerich T,
Herglotz J, Backert I, Kohrs N, Buscató El, Wittmann SK,
Salinas-Riester G, Bonig H, et al: PADI4 acts as a coactivator of
Tal1 by counteracting repressive histone arginine methylation. Nat
Commun. 5:39952014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Christophorou MA, Castelo-Branco G,
Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA,
Bertone P, Silva JC, Zernicka-Goetz M, et al: Citrullination
regulates pluripotency and histone H1 binding to chromatin. Nature.
507:104–108. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xin J and Song X: Role of peptidylarginine
deiminase type 4 in gastric cancer. Exp Ther Med. 12:3155–3160.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang L, Chang X, Yuan G, Zhao Y and Wang
P: Expression of peptidylarginine deiminase type 4 in ovarian
tumors. Int J Biol Sci. 6:454–464. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sack LM, Davoli T, Li MZ, Li Y, Xu Q,
Naxerova K, Wooten EC, Bernardi RJ, Martin TD, Chen T, et al:
Profound tissue specificity in proliferation control underlies
cancer drivers and aneuploidy patterns. Cell. 173:499–514 e23.
2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chang X and Fang K: PADI4 and
tumourigenesis. Cancer Cell Int. 10:72010. View Article : Google Scholar : PubMed/NCBI
|