1
|
Baumgart DC and Sandborn WJ: Inflammatory
bowel disease: Clinical aspects and established and evolving
therapies. Lancet. 369:1641–1657. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stenson WF, Tremaine WJ and Cohen RD:
Ulcerative Colitis: Clinical manifestations and management. In:
Yamada's Atlas of Gastroenterol. John Wiley & Sons, Ltd. (New
York, NY). 216–224. 2016.
|
3
|
Baumgart DC and Carding SR: Inflammatory
bowel disease: Cause and immunobiology. Lancet. 369:1627–1640.
2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hou JK, Abraham B and El-Serag H: Dietary
intake and risk of developing inflammatory bowel disease: A
systematic review of the literature. Am J Gastroenterol.
106:563–573. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Eaden JA, Abrams KR and Mayberry JF: The
risk of colorectal cancer in ulcerative colitis: A meta-analysis.
Gut. 48:526–535. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Laharie D, Bourreille A, Branche J, Allez
M, Bouhnik Y, Filippi J, Zerbib F, Savoye G, Nachury M, Moreau J,
et al: Ciclosporin versus infliximab in patients with severe
ulcerative colitis refractory to intravenous steroids: A parallel,
open-label randomised controlled trial. Lancet. 380:1909–1915.
2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kreijne JE, Lie MR, Vogelaar L and van der
Woude CJ: Practical guideline for fatigue management in
inflammatory bowel disease. J Crohns Colitis. 10:105–111. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Pedersen J, Coskun M, Soendergaard C,
Salem M and Nielsen OH: Inflammatory pathways of importance for
management of inflammatory bowel disease. World J Gastroenterol.
20:64–77. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hooper KM, Barlow PG, Stevens C and
Henderson P: Inflammatory bowel disease drugs: A focus on
autophagy. J Crohns Colitis. 11:118–127. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jurenka JS: Anti-inflammatory properties
of curcumin, a major constituent of Curcuma longa: A review of
preclinical and clinical research. Altern Med Rev. 14:141–153.
2009.PubMed/NCBI
|
11
|
Bar-Sela G, Epelbaum R and Schaffer M:
Curcumin as an anti-cancer agent: Review of the gap between basic
and clinical applications. Curr Med Chem. 17:190–197. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Aggarwal BB, Yuan W, Li S and Gupta SC:
Curcumin-free turmeric exhibits anti-inflammatory and anticancer
activities: Identification of novel components of turmeric. Mol
Nutr Food Res. 57:1529–1542. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Naik SR, Thakare VN and Patil SR:
Protective effect of curcumin on experimentally induced
inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence
of its antioxidant property. Exp Toxicol Pathol. 63:419–431. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Toden S, Theiss AL, Wang X and Goel A:
Essential turmeric oils enhance anti-inflammatory efficacy of
curcumin in dextran sulfate sodium-induced colitis. Sci Rep.
7:8142017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu L, Liu YL, Liu GX, Chen X, Yang K,
Yang YX, Xie Q, Gan HK, Huang XL and Gan HT: Curcumin ameliorates
dextran sulfate sodium-induced experimental colitis by blocking
STAT3 signaling pathway. Int Immunopharmacol. 17:314–320. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lang A, Salomon N, Wu JC, Kopylov U, Lahat
A, Har-Noy O, Ching JY, Cheong PK, Avidan B, Gamus D, et al:
Curcumin in combination with mesalamine induces remission in
patients with mild-to-moderate ulcerative colitis in a randomized
controlled trial. Clin Gastroenterol Hepatol. 13:1444–1449.e1.
2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Baliga MS, Joseph N, Venkataranganna MV,
Saxena A, Ponemone V and Fayad R: Curcumin, an active component of
turmeric in the prevention and treatment of ulcerative colitis:
Preclinical and clinical observations. Food Funct. 3:1109–1117.
2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Baur JA and Sinclair DA: Therapeutic
potential of resveratrol: The in vivo evidence. Nat Drug Discov.
5:493–506. 2006. View
Article : Google Scholar
|
19
|
Tomé-Carneiro J, Larrosa M,
González-Sarrías A, Tomás-Barberán FA, García-Conesa MT and Espín
JC: Resveratrol and clinical trials: The crossroad from in vitro
studies to human evidence. Curr Pharm Des. 19:6064–6093. 2013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Singh UP, Singh NP, Singh B, Singh B,
Hofseth LJ, Price RL, Nagarkatti M and Nagarkatti PS: Resveratrol
(trans-3,5,4′-trihydroxystilbene) induces SIRT1 and down-regulates
nuclear transcription factor-kappaB activation to abrogate dextran
sulfate sodium-induced colitis. J Pharmacol Exp Ther. 11:829–839.
2009.
|
21
|
Tian J, Chen JW, Gao JS, Li L and Xie X:
Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human
rheumatoid arthritis fibroblast-like synoviocytes via modulation of
PI3kinase/Akt pathway. Rheumatol Int. 33:1829–1835. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Carrasco C, Holguín-Arévalo MS,
Martín-Partido G, Rodríguez AB and Pariente JA: Chemopreventive
effects of resveratrol in a rat model of cerulein-induced acute
pancreatitis. Mol Cell Biochem. 387:217–225. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Komatsu M, Kurokawa H, Waguri S, Taguchi
K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, et
al: The selective autophagy substrate p62 activates the stress
responsive transcription factor Nrf2 through inactivation of Keap1.
Nat Cell Biol. 12:213–223. 2010. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Baxt LA and Xavier RJ: Role of autophagy
in the maintenance of intestinal homeostasis. Gastroenterology.
149:553–562. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Garcia-Maurino S, Alcaide A and Dominguez
C: Pharmacological control of autophagy: Therapeutic perspectives
in inflammatory bowel disease and colorectal cancer. Curr Pharm
Des. 18:3853–3873. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cooper HS, Murthy S, Shah R and Sedergran
D: Clinicopathologic study of dextran sulfate sodium experimental
murine colitis. Lab Invest. 69:238–249. 1993.PubMed/NCBI
|
27
|
Vochyánová Z, Bartošová L, Bujdáková V,
Fictum P, Husník R, Suchý P, Šmejkal K and Hošek J: Diplacone and
mimulone ameliorate dextran sulfate sodium-induced colitis in rats.
Fitoterapia. 101:201–207. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chassaing B, Aitken JD, Malleshappa M and
Vijay-Kuma M: Dextran sulfate sodium (DSS)-induced colitis in mice.
Curr Protoc Immunol. 104:15.25.11–15.25.14. 2014.
|
29
|
Melgar S, Karlsson L, Rehnström E,
Karlsson A, Utkovic H, Jansson L and Michaëlsson E: Validation of
murine dextran sulfate sodium-induced colitis using four
therapeutic agents for human inflammatory bowel disease. Int
Immunopharmacol. 8:836–844. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Brown SR and Coviello LC: Extraintestinal
manifestations associated with inflammatory bowel disease. Surg
Clin North Am. 95:1245–1259. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhu H and Li YR: Oxidative stress and
redox signaling mechanisms of inflammatory bowel disease: Updated
experimental and clinical evidence. Exp Biol Med (Maywood).
237:474–480. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Håkansson Å, Tormo-Badia N, Baridi A, Xu
J, Molin G, Hagslätt ML, Karlsson C, Jeppsson B, Cilio CM and Ahrné
S: Immunological alteration and changes of gut microbiota after
dextran sulfate sodium (DSS) administration in mice. Clin Exp Med.
15:107–120. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nenci A, Becker C, Wullaert A, Gareus R,
van Loo G, Danese S, Huth M, Nikolaev A, Neufert C, Madison B, et
al: Epithelial NEMO links innate immunity to chronic intestinal
inflammation. Nature. 446:557–561. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Schwanke RC, Marcon R, Meotti FC, Bento
AF, Dutra RC, Pizzollatti MG and Calixto JB: Oral administration of
the flavonoid myricitrin prevents dextran sulfate sodium-induced
experimental colitis in mice through modulation of PI3K/Akt
signaling pathway. Mol Nutr Food Res. 57:1938–1949. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Abraham C and Medzhitov R: Interactions
between the host innate immune system and microbes in inflammatory
bowel disease. Gastroenterology. 140:1729–1737. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Neurath MF: Cytokines in inflammatory
bowel disease. Nat Rev Immunol. 14:329–342. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Stillie R and Stadnyk AW: Role of TNF
receptors, TNFR1 and TNFR2, in dextran sodium sulfate-induced
colitis. Inflamm Bowel Dis. 15:1515–1525. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Geremia A, Biancheri P, Allan P, Corazza
GR and Di Sabatino A: Innate and adaptive immunity in inflammatory
bowel disease. Autoimm Rev. 13:3–10. 2014. View Article : Google Scholar
|
39
|
Strober W and Fuss IJ: Proinflammatory
cytokines in the pathogenesis of inflammatory bowel diseases.
Gastroenterology. 140:1756–1767.e1751. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Műzes G, Molnár B, Tulassay Z and Sipos F:
Changes of the cytokine profile in inflammatory bowel diseases.
World J Gastroenterol. 18:5848–5861. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Biasi F, Leonarduzzi G, Oteiza PI and Poli
G: Inflammatory bowel disease: Mechanisms, redox considerations,
and therapeutic targets. Antioxid Redox Signal. 19:1711–1747. 2013.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Fiorino G, Szabo H, Fries W, Malesci A,
Peyrin-Biroulet L and Danese S: Adalimumab in Crohn's disease: Tips
and tricks after 5 years of clinical experience. Curr Med Chem.
18:1230–1238. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Rutgeerts P, Sandborn WJ, Feagan BG,
Reinisch W, Olson A, Johanns J, Travers S, Rachmilewitz D, Hanauer
SB, Lichtenstein GR, et al: Infliximab for induction and
maintenance therapy for ulcerative colitis. New Eng J Med.
353:2462–2476. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Dionne S, D'Agata D, Hiscott J, Vanounou T
and Seidman E: Colonic explant production of IL-1 and its receptor
antagonist is imbalanced in inflammatory bowel disease (IBD). Clin
Exp Immunol. 112:435–442. 1998. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kwon KH, Murakami A, Hayashi R and
Ohigashi H: Interleukin-1beta targets interleukin-6 in progressing
dextran sulfate sodium-induced experimental colitis. Biochem
Biophys Res Commun. 337:647–654. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X,
Chen F, Wang CS, Feng H and Lin JK: Curcumin attenuates acute
inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling
pathway in experimental traumatic brain injury. J
Neuroinflammation. 11:592014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Epstein J, Sanderson IR and Macdonald TT:
Curcumin as a therapeutic agent: The evidence from in vitro, animal
and human studies. Br J Nutr. 103:1545–1557. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sánchez-Fidalgo S, Cárdeno A, Villegas I,
Talero E and de la Lastra CA: Dietary supplementation of
resveratrol attenuates chronic colonic inflammation in mice. Eur J
Pharmacol. 633:78–84. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD,
Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M
and Ohsumi Y: A unified nomenclature for yeast autophagy-related
genes. Dev Cell. 5:539–545. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Tschurtschenthaler M, Adolph TE, Ashcroft
JW, Niederreiter L, Bharti R, Saveljeva S, Bhattacharyya J, Flak
MB, Shih DQ, Fuhler GM, et al: Defective ATG16L1-mediated removal
of IRE1α drives Crohn's disease-like ileitis. J Exp Med.
214:401–422. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Shintani T and Klionsky DJ: Autophagy in
health and disease: A double-edged sword. Science. 306:990–995.
2004. View Article : Google Scholar : PubMed/NCBI
|
52
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD,
Adeli K, et al: Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Alayev A, Sun Y, Snyder RB, Berger SM, Yu
JJ and Holz MK: Resveratrol prevents rapamycin-induced upregulation
of autophagy and selectively induces apoptosis in TSC2-deficient
cells. Cell Cycle. 13:371–382. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Otomo C, Metlagel Z, Takaesu G and Otomo
T: Structure of the human ATG12~ATG5 conjugate required for LC3
lipidation in autophagy. Nat Struct Mol Biol. 20:59–66. 2013.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Ou X, Lee MR, Huang X, Messina-Graham S
and Broxmeyer HE: SIRT1 positively regulates autophagy and
mitochondria function in embryonic stem cells under oxidative
stress. Stem Cells. 32:1183–1194. 2014. View Article : Google Scholar : PubMed/NCBI
|
56
|
He C and Klionsky DJ: Regulation
mechanisms and signaling pathways of autophagy. Annu Rev Genet.
43:67–93. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Alves MM, Fuhler GM, Queiroz KC, Scholma
J, Goorden S, Anink J, Spek CA, Hoogeveen-Westerveld M, Bruno MJ,
Nellist M, et al: PAK2 is an effector of TSC1/2 signaling
independent of mTOR and a potential therapeutic target for Tuberous
Sclerosis Complex. Sci Rep. 5:145342015. View Article : Google Scholar : PubMed/NCBI
|
59
|
Seinen ML, van Nieuw Amerongen GP, de Boer
NK and van Bodegraven AA: Rac attack: Modulation of the small
GTPase Rac in inflammatory bowel disease and thiopurine therapy.
Mol Diagn Ther. 20:551–557. 2016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Satoh A, Brace CS, Rensing N, Cliften P,
Wozniak DF, Herzog ED, Yamada KA and Imai S: Sirt1 extends life
span and delays aging in mice through the regulation of Nk2
homeobox 1 in the DMH and LH. Cell Metab. 18:416–430. 2013.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Singh UP, Singh NP, Singh B, Hofseth LJ,
Price RL, Nagarkatti M and Nagarkatti PS: Resveratrol
(trans-3,5,4′-trihydroxystilbene) induces silent mating type
information regulation-1 and down-regulates nuclear transcription
factor-kappaB activation to abrogate dextran sulfate sodium-induced
colitis. J Pharmacol Exp Ther. 332:829–839. 2010. View Article : Google Scholar : PubMed/NCBI
|