|
1
|
Kuang L, Zhu Y, Zhang J, Wu Y, Tian K,
Chen X, Xue M, Tzang FC, Lau B, Wong BL, et al: A novel
cross-linked haemoglobin-based oxygen carrier is beneficial to
sepsis in rats. Artif Cells Nanomed Biotechnol. 47:1496–1504. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Moore JX, Donnelly JP, Griffin R, Howard
G, Safford MM and Wang HE: Defining sepsis mortality clusters in
the united states. Crit Care Med. 44:1380–1387. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zaky A, Deem S, Bendjelid K and Treggiari
MM: Characterization of cardiac dysfunction in sepsis: An ongoing
challenge. Shock. 41:12–24. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Salvany S, Casanovas A, Tarabal O,
Piedrafita L, Hernández S, Santafé M, Soto-Bernardini MC, Calderó
J, Schwab MH and Esquerda JE: Localization and dynamic changes of
neuregulin-1 at C-type synaptic boutons in association with motor
neuron injury and repair. FASEB J. 33:7833–7851. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Seymour CW, Liu VX, Iwashyna TJ,
Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM,
Shankar-Hari M, Singer M, et al: Assessment of clinical criteria
for sepsis: For the third international consensus definitions for
sepsis and septic shock (Sepsis-3). JAMA. 315:762–774. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Shankar-Hari M, Phillips GS, Levy ML,
Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD and
Singer M: Sepsis Definitions Task Force: Developing a new
definition and assessing new clinical criteria for septic shock:
For the third international consensus definitions for sepsis and
septic shock (Sepsis-3). JAMA. 315:775–787. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The third international consensus
definitions for sepsis and septic shock (Sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Potz BA, Sellke FW and Abid MR:
Endothelial ROS and impaired myocardial oxygen consumption in
sepsis-induced cardiac dysfunction. J Intensive Crit Care.
2:202016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cimolai MC, Alvarez S, Bode C and Bugger
H: Mitochondrial mechanisms in septic cardiomyopathy. Int J Mol
Sci. 16:17763–17778. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Martin L, Derwall M, Thiemermann C and
Schürholz T: Heart in sepsis: Molecular mechanisms, diagnosis and
therapy of septic cardiomyopathy. Anaesthesist. 66:479–490.
2017.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
11
|
DUva G, Aharonov A, Lauriola M, Kain D,
Yahalom-Ronen Y, Carvalho S, Weisinger K, Bassat E, Rajchman D,
Yifa O, et al: ERBB2 triggers mammalian heart regeneration by
promoting cardiomyocyte dedifferentiation and proliferation. Nat
Cell Biol. 17:627–638. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Brown D, Samsa LA, Ito C, Ma H, Batres K,
Arnaout R, Qian L and Liu J: Neuregulin-1 is essential for nerve
plexus formation during cardiac maturation. J Cell Mol Med.
22:2007–2017. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hobai IA, Edgecomb J, LaBarge K and
Colucci WS: Dysregulation of intracellular calcium transporters in
animal models of sepsis-induced cardiomyopathy. Shock. 43:3–15.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yutzey KE: Regenerative biology:
Neuregulin 1 makes heart muscle. Nature. 520:445–446. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhou Q, Pan X, Wang L, Wang X and Xiong D:
The protective role of neuregulin-1: A potential therapy for
sepsis-induced cardiomyopathy. Eur J Pharmacol. 788:234–240. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Takasu O, Gaut JP, Watanabe E, To K,
Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, et
al: Mechanisms of cardiac and renal dysfunction in patients dying
of sepsis. Am J Respir Crit Care Med. 187:509–517. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang F, Wang H, Liu X, Yu H, Zuo B, Song
Z, Wang N, Huang W and Wang G: Pharmacological postconditioning
with Neuregulin-1 mimics the cardioprotective effects of ischaemic
postconditioning via ErbB4-dependent activation of reperfusion
injury salvage kinase pathway. Mol Med. 24:392018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Galindo CL, Kasasbeh E, Murphy A, Ryzhov
S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, et al:
Anti-remodeling and anti-fibrotic effects of the neuregulin-1beta
glial growth factor 2 in a large animal model of heart failure. J
Am Heart Assoc. 4:e5282015.
|
|
19
|
Fang SJ, Li PY, Wang CM, Xin Y, Lu WW,
Zhang XX, Zuo S, Ma CS, Tang CS, Nie SP, et al: Inhibition of
endoplasmic reticulum stress by neuregulin-1 protects against
myocardial ischemia/reperfusion injury. Peptides. 88:196–207. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cai MX, Shi XC, Chen T, Tan ZN, Lin QQ, Du
SJ and Tian ZJ: Exercise training activates neuregulin 1/ErbB
signaling and promotes cardiac repair in a rat myocardial
infarction model. Life Sci. 149:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Formiga FR, Pelacho B, Garbayo E,
Imbuluzqueta I, Díaz-Herráez P, Abizanda G, Gavira JJ, Simón-Yarza
T, Albiasu E, Tamayo E, et al: Controlled delivery of fibroblast
growth factor-1 and neuregulin-1 from biodegradable microparticles
promotes cardiac repair in a rat myocardial infarction model
through activation of endogenous regeneration. J Control Release.
173:132–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cohen JE, Purcell BP, MacArthur JW Jr, Mu
A, Shudo Y, Patel JB, Brusalis CM, Trubelja A, Fairman AS, Edwards
BB, et al: A bioengineered hydrogel system enables targeted and
sustained intramyocardial delivery of neuregulin, activating the
cardiomyocyte cell cycle and enhancing ventricular function in a
murine model of ischemic cardiomyopathy. Circ Heart Fail.
7:619–626. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sepúlveda M, Gonano LA, Viotti M, Morell
M, Blanco P, López Alarcón M, Peroba Ramos I, Bastos Carvalho A,
Medei E and Vila Petroff M: Calcium/Calmodulin protein kinase
II-dependent ryanodine receptor phosphorylation mediates cardiac
contractile dysfunction associated with sepsis. Crit Care Med.
45:e399–e408. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Brero A, Ramella R, Fitou A, Dati C,
Alloatti G, Gallo MP and Levi R: Neuregulin-1beta1 rapidly
modulates nitric oxide synthesis and calcium handling in rat
cardiomyocytes. Cardiovasc Res. 88:443–452. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Candel FJ, Borges Sá M, Belda S, Bou G,
Del Pozo JL, Estrada O, Ferrer R, González Del Castillo J,
Julián-Jiménez A, Martín-Loeches I, et al: Current aspects in
sepsis approach. Turning things around. Rev Esp Quimioter.
31:298–315. 2018.PubMed/NCBI
|
|
26
|
Bermejo-Martin JF, Martín-Fernandez M,
López-Mestanza C, Duque P and Almansa R: Shared features of
endothelial dysfunction between Sepsis and its preceding risk
factors (Aging and Chronic Disease). J Clin Med. 7:4002018.
View Article : Google Scholar :
|
|
27
|
Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo
EH and Lok J: Neuregulin1-β decreases IL-1β-induced neutrophil
adhesion to human brain microvascular endothelial cells. Transl
Stroke Res. 6:116–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Burger D and Touyz RM: Cellular biomarkers
of endothelial health: Microparticles, endothelial progenitor
cells, and circulating endothelial cells. J Am Soc Hypertens.
6:85–99. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Parodi EM and Kuhn B: Signalling between
microvascular endothelium and cardiomyocytes through neuregulin.
Cardiovasc Res. 102:194–204. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hedhli N, Dobrucki LW, Kalinowski A,
Zhuang ZW, Wu X, Russell RR III, Sinusas AJ and Russell KS:
Endothelial-derived neuregulin is an important mediator of
ischaemia-induced angiogenesis and arteriogenesis. Cardiovasc Res.
93:516–524. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Stefanou C, Karatzanos E, Mitsiou G,
Psarra K, Angelopoulos E, Dimopoulos S, Gerovasili V, Boviatsis E,
Routsi C and Nanas S: Neuromuscular electrical stimulation acutely
mobilizes endothelial progenitor cells in critically ill patients
with sepsis. Ann Intensive Care. 6:212016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Awada HK, Hwang MP and Wang Y: Towards
comprehensive cardiac repair and regeneration after myocardial
infarction: Aspects to consider and proteins to deliver.
Biomaterials. 82:94–112. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lemmens K, Segers VF, Demolder M and De
Keulenaer GW: Role of neuregulin-1/ErbB2 signaling in
endothelium-cardiomyocyte cross-talk. J Biol Chem. 281:19469–19477.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wu C, Gui C, Li L, Pang Y, Tang Z and Wei
J: Expression and secretion of neuregulin-1 in cardiac
microvascular endothelial cells treated with angiogenic factors.
Exp Ther Med. 15:3577–3581. 2018.PubMed/NCBI
|
|
35
|
Fernandes CJ Jr and de Assuncao MS:
Myocardial dysfunction in sepsis: A large, unsolved puzzle. Crit
Care Res Pract. 2012:8964302012.PubMed/NCBI
|
|
36
|
Pathan N, Franklin JL, Eleftherohorinou H,
Wright VJ, Hemingway CA, Waddell SJ, Griffiths M, Dennis JL, Relman
DA, Harding SE, et al: Myocardial depressant effects of interleukin
6 in meningococcal sepsis are regulated by p38 mitogen-activated
protein kinase. Crit Care Med. 39:1692–1711. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pathan N, Hemingway CA, Alizadeh AA,
Stephens AC, Boldrick JC, Oragui EE, McCabe C, Welch SB, Whitney A,
OGara P, et al: Role of interleukin 6 in myocardial dysfunction of
meningococcal septic shock. Lancet. 363:203–209. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Waage A, Brandtzaeg P, Halstensen A,
Kierulf P and Espevik T: The complex pattern of cytokines in serum
from patients with meningococcal septic shock. Association between
interleukin 6, interleukin 1, and fatal outcome. J Exp Med.
169:333–338. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Leblais V, Jo SH, Chakir K, Maltsev V,
Zheng M, Crow MT, Wang W, Lakatta EG and Xiao RP:
Phosphatidylinositol 3-kinase offsets cAMP-mediated positive
inotropic effect via inhibiting Ca2+ influx in
cardiomyocytes. Circ Res. 95:1183–1190. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Britsch S: The neuregulin-I/ErbB signaling
system in development and disease. Adv Anat Embryol Cell Biol.
190:1–65. 2007.PubMed/NCBI
|
|
41
|
Mencel M, Nash M and Jacobson C:
Neuregulin upregulates microglial α7 nicotinic acetylcholine
receptor expression in immortalized cell lines: Implications for
regulating neuroinflammation. PLoS One. 8:e703382013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li Y, Lein PJ, Ford GD, Liu C, Stovall KC,
White TE, Bruun DA, Tewolde T, Gates AS, Distel TJ, et al:
Neuregulin-1 inhibits neuroinflammatory responses in a rat model of
organophosphate-nerve agent-induced delayed neuronal injury. J
Neuroinflammation. 12:642015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Solomon W, Wilson NO, Anderson L, Pitts S,
Patrickson J, Liu M, Ford BD and Stiles JK: Neuregulin-1 attenuates
mortality associated with experimental cerebral malaria. J
Neuroinflammation. 11:92014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gholami M, Mazaheri P, Mohamadi A, Dehpour
T, Safari F, Hajizadeh S, Moore KP and Mani AR: Endotoxemia is
associated with partial uncoupling of cardiac pacemaker from
cholinergic neural control in rats. Shock. 37:219–227. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fernandez R, Nardocci G, Navarro C, Reyes
EP, Acuña-Castillo C and Cortes PP: Neural reflex regulation of
systemic inflammation: Potential new targets for sepsis therapy.
Front Physiol. 5:4892014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Rosas-Ballina M, Valdés-Ferrer SI, Dancho
ME, Ochani M, Katz D, Cheng KF, Olofsson PS, Chavan SS, Al-Abed Y,
Tracey KJ, et al: Xanomeline suppresses excessive pro-inflammatory
cytokine responses through neural signal-mediated pathways and
improves survival in lethal inflammation. Brain Behav Immun.
44:19–27. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Matsukawa R, Hirooka Y, Ito K, Honda N and
Sunagawa K: Central neuregulin-1/ErbB signaling modulates cardiac
function via sympathetic activity in pressure overload-induced
heart failure. J Hypertens. 32:817–825. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Schmidt H, Müller-Werdan U, Hoffmann T,
Francis DP, Piepoli MF, Rauchhaus M, Prondzinsky R, Loppnow H,
Buerke M, Hoyer D, et al: Autonomic dysfunction predicts mortality
in patients with multiple organ dysfunction syndrome of different
age groups. Crit Care Med. 33:1994–2002. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jabbour A, Gao L, Kwan J, Watson A, Sun L,
Qiu MR, Liu X, Zhou MD, Graham RM, Hicks M, et al: A recombinant
human neuregulin-1 peptide improves preservation of the rodent
heart after prolonged hypothermic storage. Transplantation.
91:961–967. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Fattahi F, Kalbitz M, Malan EA, Abe E,
Jajou L, Huber-Lang MS, Bosmann M, Russell MW, Zetoune FS and Ward
PA: Complement-induced activation of MAPKs and Akt during sepsis:
role in cardiac dysfunction. FASEB J. 31:4129–4139. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Checchia PA, Schierding W, Polpitiya A,
Dixon D, Macmillan S, Muenzer J, Stromberg P, Coopersmith CM,
Buchman TG and Cobb JP: Myocardial transcriptional profiles in a
murine model of sepsis: Evidence for the importance of age. Pediatr
Crit Care Med. 9:530–535. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhou H, Qian J, Li C, Li J, Zhang X, Ding
Z, Gao X, Han Z, Cheng Y and Liu L: Attenuation of cardiac
dysfunction by HSPA12B in endotoxin-induced sepsis in mice through
a PI3K-dependent mechanism. Cardiovasc Res. 89:109–118. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cvijanovich N, Shanley TP, Lin R, Allen
GL, Thomas NJ, Checchia P, Anas N, Freishtat RJ, Monaco M, Odoms K,
et al: Genomics of Pediatric SIRS/Septic Shock Investigators:
Validating the genomic signature of pediatric septic shock. Physiol
Genomics. 34:127–134. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Preau S, Delguste F, Yu Y, Remy-Jouet I,
Richard V, Saulnier F, Boulanger E and Neviere R: Endotoxemia
engages the RhoA kinase pathway to impair cardiac function by
altering cytoskeleton, mitochondrial fission, and autophagy.
Antioxid Redox Signal. 24:529–542. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ky B, Kimmel SE, Safa RN, Putt ME,
Sweitzer NK, Fang JC, Sawyer DB and Cappola TP: Neuregulin-1 beta
is associated with disease severity and adverse outcomes in chronic
heart failure. Circulation. 120:310–317. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Odiete O, Hill MF and Sawyer DB:
Neuregulin in cardiovascular development and disease. Circ Res.
111:1376–1385. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen XL, Xia ZF, Wei D, Han S, Ben DF and
Wang GQ: Role of p38 mitogen-activated protein kinase in Kupffer
cell secretion of the proinflammatory cytokines after burn trauma.
Burns. 29:533–539. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mockridge JW, Marber MS and Heads RJ:
Activation of Akt during simulated ischemia/reperfusion in cardiac
myocytes. Biochem Biophys Res Commun. 270:947–952. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Talmor D, Applebaum A, Rudich A, Shapira Y
and Tirosh A: Activation of mitogen-activated protein kinases in
human heart during cardiopulmonary bypass. Circ Res. 86:1004–1007.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dong X, Liu Y, Du M, Wang Q, Yu CT and Fan
X: P38 mitogen-activated protein kinase inhibition attenuates
pulmonary inflammatory response in a rat cardiopulmonary bypass
model. Eur J Cardiothorac Surg. 30:77–84. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Menon R and Papaconstantinou J: p38
Mitogen activated protein kinase (MAPK): A new therapeutic target
for reducing the risk of adverse pregnancy outcomes. Expert Opin
Ther Targets. 20:1397–1412. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Antoon JW, Bratton MR, Guillot LM,
Wadsworth S, Salvo VA, Elliott S, McLachlan JA and Burow ME:
Pharmacology and anti-tumor activity of RWJ67657, a novel inhibitor
of p38 mitogen activated protein kinase. Am J Cancer Res.
2:446–458. 2012.PubMed/NCBI
|
|
63
|
Kim SJ, Baek KS, Park HJ, Jung YH and Lee
SM: Compound 9a, a novel synthetic histone deacetylase inhibitor,
protects against septic injury in mice by suppressing MAPK
signalling. Br J Pharmacol. 173:1045–1057. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Su J, Cui X, Li Y, Mani H, Ferreyra GA,
Danner RL, Hsu LL, Fitz Y and Eichacker PQ: SB203580, a p38
inhibitor, improved cardiac function but worsened lung injury and
survival during Escherichia coli pneumonia in mice. J Trauma.
68:1317–1327. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang J, Zhou J, Wang Y, Yang C, Fu M,
Zhang J, Han X, Li Z, Hu K and Ge J: Qiliqiangxin protects against
anoxic injury in cardiac microvascular endothelial cells via
NRG-1/ErbB-PI3K/Akt/mTOR pathway. J Cell Mol Med. 21:1905–1914.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Vessey DA, Li L and Kelley M: Ischemic
preconditioning requires opening of pannexin-1/P2X(7) channels not
only during preconditioning but again after index ischemia at full
reperfusion. Mol Cell Biochem. 351:77–84. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhuo C, Wang Y, Wang X, Wang Y and Chen Y:
Cardioprotection by ischemic postconditioning is abolished in
depressed rats: Role of Akt and signal transducer and activator of
transcription-3. Mol Cell Biochem. 346:39–47. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kirabo A, Ryzhov S, Gupte M, Sengsayadeth
S, Gumina RJ, Sawyer DB and Galindo CL: Neuregulin-1β induces
proliferation, survival and paracrine signaling in normal human
cardiac ventricular fibroblasts. J Mol Cell Cardiol. 105:59–69.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bopassa JC, Ferrera R, Gateau-Roesch O,
Couture-Lepetit E and Ovize M: PI 3-kinase regulates the
mitochondrial transition pore in controlled reperfusion and
postconditioning. Cardiovasc Res. 69:178–185. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Rahman S, Li J, Bopassa JC, Umar S, Iorga
A, Partownavid P and Eghbali M: Phosphorylation of GSK-3β mediates
intralipid-induced cardioprotection against ischemia/reperfusion
injury. Anesthesiology. 115:242–253. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Guo LW, Gao L, Rothschild J, Su B and
Gelman IH: Control of protein kinase C activity, phorbol
ester-induced cytoskeletal remodeling, and cell survival signals by
the scaffolding protein SSeCKS/GRAVIN/AKAP12. J Biol Chem.
286:38356–38366. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Siafakas NM, Antoniou KM and Tzortzaki EG:
Role of angiogenesis and vascular remodeling in chronic obstructive
pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2:453–462.
2007.PubMed/NCBI
|
|
73
|
Mount PF, Kemp BE and Power DA: Regulation
of endothelial and myocardial NO synthesis by multi-site eNOS
phosphorylation. J Mol Cell Cardiol. 42:271–279. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sawada N and Liao JK: Targeting eNOS and
beyond: Emerging heterogeneity of the role of endothelial Rho
proteins in stroke protection. Expert Rev Neurother. 9:1171–1186.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rana MK and Worthylake RA: Novel mechanism
for negatively regulating Rho-kinase (ROCK) signaling through
Coronin1B protein in neuregulin 1 (NRG-1)-induced tumor cell
motility. J Biol Chem. 287:21836–21845. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
van Nieuw Amerongen GP, Koolwijk P,
Versteilen A and van Hinsbergh VW: Involvement of RhoA/Rho kinase
signaling in VEGF-induced endothelial cell migration and
angiogenesis in vitro. Arterioscler Thromb Vasc Biol. 23:211–217.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Anwar KN, Fazal F, Malik AB and Rahman A:
RhoA/Rho-associated kinase pathway selectively regulates
thrombin-induced intercellular adhesion molecule-1 expression in
endothelial cells via activation of I kappa B kinase beta and
phosphorylation of RelA/p65. J Immunol. 173:6965–6972. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chang W, Xie JF, Xu JY and Yang Y: Effect
of levosimendan on mortality in severe sepsis and septic shock: A
meta-analysis of randomised trials. BMJ Open. 8:e0193382018.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bonner JM and Boulianne GL: Diverse
structures, functions and uses of FK506 binding proteins. Cell
Signal. 38:97–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Bruno F, Xavier W and Ricard F: Safety and
pharmacodynamic activity of a novel TREM-1 pathway inhibitory
peptide in septic shock patients: Phase IIa clinical trial results.
Intensive Care Med Exp. 6 (Suppl 1):1–33. 2018.
|
|
81
|
Fang SJ, Wu XS, Han ZH, Zhang XX, Wang CM,
Li XY, Lu LQ and Zhang JL: Neuregulin-1 preconditioning protects
the heart against ischemia/reperfusion injury through a
PI3K/Akt-dependent mechanism. Chin Med J (Engl). 123:3597–3604.
2010.PubMed/NCBI
|
|
82
|
Zhou Z, Guo F, Dou Y, Tang J and Huan J:
Guanine nucleotide exchange factor-H1 signaling is involved in
lipopolysaccharide-induced endothelial barrier dysfunction.
Surgery. 154:621–631. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Liu X, Gu X, Li Z, Li X, Li H, Chang J,
Chen P, Jin J, Xi B, Chen D, et al: Neuregulin-1/erbB-activation
improves cardiac function and survival in models of ischemic,
dilated, and viral cardiomyopathy. J Am Coll Cardiol. 48:1438–1447.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Galindo CL, Kasasbeh E, Murphy A, Ryzhov
S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, Song Y,
et al: Anti-remodeling and anti-fibrotic effects of the
neuregulin-1β glial growth factor 2 in a large animal model of
heart failure. J Am Heart Assoc. 4:e0005282015.PubMed/NCBI
|
|
85
|
Bersell K, Arab S, Haring B and Kühn B:
Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and
repair of heart injury. Cell. 138:257–270. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sawyer DB, Zuppinger C, Miller TA,
Eppenberger HM and Suter TM: Modulation of anthracycline-induced
myofibrillar disarray in rat ventricular myocytes by
neuregulin-1beta and anti-erbB2: Potential mechanism for
trastuzumab-induced cardiotoxicity. Circulation. 105:1551–1554.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Grazette LP, Boecker W, Matsui T, Semigran
M, Force TL, Hajjar RJ and Rosenzweig A: Inhibition of ErbB2 causes
mitochondrial dysfunction in cardiomyocytes: Implications for
herceptin-induced cardiomyopathy. J Am Coll Cardiol. 44:2231–2238.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Caillaud K, Boisseau N, Ennequin G,
Chavanelle V, Etienne M, Li X, Denis P, Dardevet D, Lacampagne A
and Sirvent P: Neuregulin 1 improves glucose tolerance in adult and
old rats. Diabetes Metab. 42:96–104. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang X, Zhuo X, Gao J, Liu H, Lin F and Ma
A: Neuregulin-1β partially improves cardiac function in
volume-overload heart failure through regulation of abnormal
calcium handing. Front Pharmacol. 10:6162019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang X, Liu Z, Duan HN and Wang L:
Therapeutic potential of neuregulin in cardiovascular system: Can
we ignore the effects of neuregulin on electrophysiology? Mini Rev
Med Chem. 16:867–871. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jabbour A, Hayward CS, Keogh AM, Kotlyar
E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, et al:
Parenteral administration of recombinant human neuregulin-1 to
patients with stable chronic heart failure produces favourable
acute and chronic haemodynamic responses. Eur J Heart Fail.
13:83–92. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gao R, Zhang J, Cheng L, Wu X, Dong W,
Yang X, Li T, Liu X, Xu Y, Li X, et al: A Phase II, randomized,
double-blind, multicenter, based on standard therapy,
placebo-controlled study of the efficacy and safety of recombinant
human neuregulin-1 in patients with chronic heart failure. J Am
Coll Cardiol. 55:1907–1914. 2010. View Article : Google Scholar : PubMed/NCBI
|