1
|
Wynne-Davies R: Genetic and environmental
factors in the etiology of talipes equinovarus. Clin Orthop Relat
Res. 84:9–13. 1972. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ester AR, Tyerman G, Wise CA, Blanton SH
and Hecht JT: Apoptotic gene analysis in idiopathic talipes
equinovarus (clubfoot). Clin Orthop Relat Res. 462:32–37. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wynne-Davies R: Family studies and the
cause of congenital club foot. Talipes Equinovarus, Talipes
Calcaneo-Valgus and Metatarsus Varus. J Bone Joint Surg Br.
46:445–463. 1964. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pavone V, Chisari E, Vescio A, Lucenti L,
Sessa G and Testas G: The etiology of idiopathic congenital talipes
equinovarus: A systematic review. J Orthop Surg Res. 13:2062018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Basit S and Khoshhal KI: Genetics of
clubfoot; recent progress and future perspectives. Eur J Med Genet.
61:107–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ching GH, Chung CS and Nemechek RW:
Genetic and epidemiological studies of clubfoot in Hawaii:
Ascertainment and incidence. Am J Hum Genet. 21:566–580.
1969.PubMed/NCBI
|
7
|
Alvarado DM, Buchan JG, Frick SL,
Herzenberg JE, Dobbs MB and Gurnett CA: Copy number analysis of 413
isolated talipes equinovarus patients suggests role for
transcriptional regulators of early limb development. Eur J Hum
Genet. 21:373–380. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Alvarado DM, Aferol H, McCall K, Huang JB,
Techy M, Buchan J, Cady J, Gonzales PR, Dobbs MB and Gurnett CA:
Familial isolated clubfoot is associated with recurrent chromosome
17q23.1q23.2 microduplications containing TBX4. Am J Hum Genet.
87:154–160. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Alvarado DM, McCall K, Aferol H, Silva MJ,
Garbow JR, Spees WM, Patel T, Siegel M, Dobbs MB and Gurnett CA:
Pitx1 haploinsufficiency causes clubfoot in humans and a
clubfoot-like phenotype in mice. Hum Mol Genet. 20:3943–3952. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Cao D, Jin C, Ren M, Lin C, Zhang X and
Zhao N: The expression of Gli3, regulated by HOXD13, may play a
role in idiopathic congenital talipes equinovarus. BMC
Musculoskelet Disord. 10:1422009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ester AR, Weymouth KS, Burt A, Wise CA,
Scott A, Gurnett CA, Dobbs MB, Blanton SH and Hecht JT: Altered
transmission of HOX and apoptotic SNPs identify a potential common
pathway for clubfoot. Am J Med Genet A. 149A:2745–2752. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Gurnett CA, Alaee F, Kruse LM, Desruisseau
DM, Hecht JT, Wise CA, Bowcock AM and Dobbs MB: Asymmetric
lower-limb malformations in individuals with homeobox PITX1 gene
mutation. Am J Hum Genet. 83:616–622. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang Y, Sun Y, Huang Y, Pan Y, Shi B, Ma
J, Ma L, Lan F, Zhou Y, Shi J, et al: The association study of
nonsyndromic cleft lip with or without cleft palate identified risk
variants of the GLI3 gene in a Chinese population. J Genet.
96:687–693. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dickinson KC, Meyer RE and Kotch J:
Maternal smoking and the risk for clubfoot in infants. Birth
Defects Res A Clin Mol Teratol. 82:86–91. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Parker SE, Mai CT, Strickland MJ, Olney
RS, Rickard R, Marengo L, Wang Y, Hashmi SS and Meyer RE; National
Birth Defects Prevention Network, : Multistate study of the
epidemiology of clubfoot. Birth Defects Res A Clin Mol Teratol.
85:897–904. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang Z, Kong Z, Zhu M, Lu W, Ni L, Bai Y
and Lou Y: Whole genome sequencing identifies ANXA3 and MTHFR
mutations in a large family with an unknown equinus deformity
associated genetic disorder. Mol Biol Rep. 43:1147–1155. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang K, Shen M, Yan Y, Tan Y, Zhang J, Wu
J, Yang G, Li S, Wang J, Ren Z, et al: Genetic analysis in fetal
skeletal dysplasias by trio whole-exome sequencing. BioMed Res Int.
2019:24925902019.PubMed/NCBI
|
18
|
Arsham MS, Barch MJ and Lawce HJ: The AGT
Cytogenetics Laboratory Manual. John Wiley & Sons Inc.
(Hoboken, NJ). 2017. View Article : Google Scholar
|
19
|
McGowan-Jordan J, Simons A and Schmid M:
An International System for Human Cytogenomic Nomenclature. Karger.
(Basel, Switzerland). 2016.
|
20
|
Chen Y, Bartanus J, Liang D, Zhu H, Breman
AM, Smith JL, Wang H, Ren Z, Patel A, Stankiewicz P, et al:
Characterization of chromosomal abnormalities in pregnancy losses
reveals critical genes and loci for human early development. Hum
Mutat. 38:669–677. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Riggs ER, Andersen EF, Cherry AM, Kantarci
S, Kearney H, Patel A, Raca G, Ritter DI, South ST, Thorland EC, et
al: Technical standards for the interpretation and reporting of
constitutional copy-number variants: a joint consensus
recommendation of the American College of Medical Genetics and
Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet
Med. 22:245–257. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Richards S, Aziz N, Bale S, Bick D, Das S,
Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al: ACMG
Laboratory Quality Assurance Committee: Standards and guidelines
for the interpretation of sequence variants: A joint consensus
recommendation of the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology. Genet Med.
17:405–424. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang JH, Palmer RM and Chung CS: The role
of major gene in clubfoot. Am J Hum Genet. 42:772–776.
1988.PubMed/NCBI
|
24
|
Chapman C, Stott NS, Port RV and Nicol RO:
Genetics of club foot in Maori and Pacific people. J Med Genet.
37:680–683. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao XL, Wang YJ, Wu YL and Han WH: Role
of COL9A1 genetic polymorphisms in development of congenital
talipes equinovarus in a Chinese population. Genet Mol Res. Nov
3–2016.(Epub ahead of print). doi: 10.4238/gmr15048773. View Article : Google Scholar :
|
26
|
Lu W, Bacino CA, Richards BS, Alvarez C,
VanderMeer JE, Vella M, Ahituv N, Sikka N, Dietz FR, Blanton SH, et
al: Studies of TBX4 and chromosome 17q23.1q23.2: An uncommon cause
of nonsyndromic clubfoot. Am J Med Genet A. 158A:1620–1627. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Alvarado DM, Buchan JG, Gurnett CA and
Dobbs MB: Exome sequencing identifies an MYH3 mutation in a family
with distal arthrogryposis type 1. J Bone Joint Surg Am.
93:1045–1050. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang H, Zheng Z, Cai H, Li H, Ye X, Zhang
X, Wang Z and Fu Q: Three novel missense mutations in the filamin B
gene are associated with isolated congenital talipes equinovarus.
Hum Genet. 135:1181–1189. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kuleshov MV, Jones MR, Rouillard AD,
Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM,
Lachmann A, et al: Enrichr: A comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res. 44:W90–W97.
2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Utami KH, Winata CL, Hillmer AM, Aksoy I,
Long HT, Liany H, Chew EG, Mathavan S, Tay SK, Korzh V, et al:
Impaired development of neural-crest cell-derived organs and
intellectual disability caused by MED13L haploinsufficiency. Hum
Mutat. 35:1311–1320. 2014.PubMed/NCBI
|
31
|
Muncke N, Jung C, Rüdiger H, Ulmer H,
Roeth R, Hubert A, Goldmuntz E, Driscoll D, Goodship J, Schön K, et
al: Missense mutations and gene interruption in PROSIT240, a novel
TRAP240-like gene, in patients with congenital heart defect
(transposition of the great arteries). Circulation. 108:2843–2850.
2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Asadollahi R, Oneda B, Sheth F,
Azzarello-Burri S, Baldinger R, Joset P, Latal B, Knirsch W, Desai
S, Baumer A, et al: Dosage changes of MED13L further delineate its
role in congenital heart defects and intellectual disability. Eur J
Hum Genet. 21:1100–1104. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hamdan FF, Srour M, Capo-Chichi JM, Daoud
H, Nassif C, Patry L, Massicotte C, Ambalavanan A, Spiegelman D,
Diallo O, et al: De novo mutations in moderate or severe
intellectual disability. PLoS Genet. 10:e10047722014. View Article : Google Scholar : PubMed/NCBI
|
34
|
van Haelst MM, Monroe GR, Duran K, van
Binsbergen E, Breur JM, Giltay JC and van Haaften G: Further
confirmation of the MED13L haploinsufficiency syndrome. Eur J Hum
Genet. 23:135–138. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Adegbola A, Musante L, Callewaert B,
Maciel P, Hu H, Isidor B, Picker-Minh S, Le Caignec C, Delle Chiaie
B, Vanakker O, et al: Redefining the MED13L syndrome. Eur J Hum
Genet. 23:1308–1317. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lin HY, Wang XF, Ng-Eaton E, Weinberg RA
and Lodish HF: Expression cloning of the TGF-β type II receptor, a
functional transmembrane serine/threonine kinase. Cell. 68:775–785.
1992. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mizuguchi T, Collod-Beroud G, Akiyama T,
Abifadel M, Harada N, Morisaki T, Allard D, Varret M, Claustres M,
Morisaki H, et al: Heterozygous TGFBR2 mutations in Marfan
syndrome. Nat Genet. 36:855–860. 2004. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Loeys BL, Chen J, Neptune ER, Judge DP,
Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, et
al: A syndrome of altered cardiovascular, craniofacial,
neurocognitive and skeletal development caused by mutations in
TGFBR1 or TGFBR2. Nat Genet. 37:275–281. 2005. View Article : Google Scholar : PubMed/NCBI
|