1
|
Malekmohammad K, Sewell RDE and
Rafieian-Kopaei M: Antioxidants and atherosclerosis: Mechanistic
aspects. Biomolecules. 9:E3012019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Farmakis TM, Soulis JV, Giannoglou GD,
Zioupos GJ and Louridas GE: Wall shear stress gradient topography
in the normal left coronary arterial tree: Possible implications
for atherogenesis. Curr Med Res Opin. 20:587–596. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sandoo A and Kitas GD: A methodological
approach to non-invasive assessments of vascular function and
morphology. J Vis Exp. 2015. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Gimbrone MA Jr and Garcia-Cardena G:
Endothelial cell dysfunction and the pathobiology of
atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Huynh DTN and Heo KS: Therapeutic targets
for endothelial dysfunction in vascular diseases. Arch Pharm Res.
42:848–861. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Heo KS, Berk BC and Abe J: Disturbed
flow-induced endothelial proatherogenic signaling via regulating
post-translational modifications and epigenetic events. Antioxid
Redox Signal. 25:435–450. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Penna C, Tullio F, Femmino S, Rocca C,
Angelone T, Cerra MC, Gallo MP, Gesmundo I, Fanciulli A, Brizzi MF,
et al: Obestatin regulates cardiovascular function and promotes
cardioprotection through the nitric oxide pathway. J Cell Mol Med.
21:3670–3678. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Godo S and Shimokawa H: Divergent roles of
endothelial nitric oxide synthases system in maintaining
cardiovascular homeostasis. Free Radic Biol Med. 109:4–10. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Forstermann U, Xia N and Li H: Roles of
vascular oxidative stress and nitric oxide in the pathogenesis of
atherosclerosis. Circ Res. 120:713–735. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kumar A, Hung OY, Piccinelli M, Eshtehardi
P, Corban MT, Sternheim D, Yang B, Lefieux A, Molony DS, Thompson
EW, et al: Low coronary wall shear stress is associated with severe
endothelial dysfunction in patients with nonobstructive coronary
artery disease. JACC Cardiovasc Interv. 11:2072–2080. 2018.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Siasos G, Sara JD, Zaromytidou M, Park KH,
Coskun AU, Lerman LO, Oikonomou E, Maynard CC, Fotiadis D, Stefanou
K, et al: Local low shearstress and endothelial dysfunction in
patients with nonobstructive coronary atherosclerosis. J Am Coll
Cardiol. 71:2092–2102. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Plank MJ, Wall DJ and David T:
Atherosclerosis and calcium signalling in endothelial cells. Prog
Biophys Mol Biol. 91:287–313. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Oakley R and Tharakan B: Vascular
hyperpermeability and aging. Aging Dis. 5:114–125. 2014.PubMed/NCBI
|
14
|
Green J, Yurdagul A Jr, McInnis MC, Albert
P and Orr AW: Flow patterns regulate hyperglycemia-induced
subendothelial matrix remodeling during earlyatherogenesis.
Atherosclerosis. 232:277–284. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chao Y, Zhu L, Qu X, Zhang J, Zhang J,
Kong X, Gu Y, Pu J, Wu W, Ye P, et al: Inhibition of angiotension
II type 1 receptor reduced human endothelial inflammation induced
by low shear stress. Exp Cell Res. 360:94–104. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Feng YM, Chen XH and Zhang X: Roles of
PECAM-1 in cell function and disease progression. Eur Rev Med
Pharmacol Sci. 20:4082–4088. 2016.PubMed/NCBI
|
17
|
Chistiakov DA, Orekhov AN and Bobryshev
YV: Endothelial PECAM-1 and its function in vascular physiology and
atherogenic pathology. Exp Mol Pathol. 100:409–415. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lertkiatmongkol P, Liao D, Mei H, Hu Y and
Newman PJ: Endothelial functions of platelet/endothelial cell
adhesion molecule-1 (CD31). Curr Opin Hematol. 23:253–259. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Harry BL, Sanders JM, Feaver RE, Lansey M,
Deem TL, Zarbock A, Bruce AC, Pryor AW, Gelfand BD, Blackman BR, et
al: Endothelial cell PECAM-1 promotes atherosclerotic lesions in
areas of disturbed flow in ApoE-deficient mice. Arterioscler Thromb
Vasc Biol. 28:2003–2008. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Goel R, Schrank BR, Arora S, Boylan B,
Fleming B, Miura H, Newman PJ, Molthen RC and Newman DK:
Site-specific effects of PECAM-1 on atherosclerosis in LDL
receptor-deficient mice. Arterioscler Thromb Vasc Biol.
28:1996–2002. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Harrison M, Smith E, Ross E, Krams R,
Segers D, Buckley CD, Nash GB and Rainger GE: The role of
platelet-endothelial cell adhesion molecule-1 in atheroma formation
varies depending on the site-specific hemodynamic environment.
Arterioscler Thromb Vasc Biol. 33:694–701. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang J, Wang Z, Zhang J, Zuo G, Li B, Mao
W and Chen S: Rapamycin attenuates endothelial apoptosis induced by
low shear stress via mTOR and sestrin1 related redox regulation.
Mediators Inflamm. 2014:7696082014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rezvan A, Ni CW, Alberts-Grill N and Jo H:
Animal, in vitro, and ex vivo models of flow-dependent
atherosclerosis: Role of oxidative stress. Antioxid Redox Signal.
15:1433–1448. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ramkhelawon B, Vilar J, Rivas D, Mees B,
de Crom R, Tedgui A and Lehoux S: Shear stress regulates
angiotensin type 1 receptor expression in endothelial cells. Circ
Res. 105:869–875. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Avivi C, Rosen O and Goldstein RS: New
chromogens for alkaline phosphatase histochemistry: Salmon and
magenta phosphate are useful for single- and double-label
immunohistochemistry. J Histochem Cytochem. 42:551–554. 1994.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Specht E, Kaemmerer D, Sanger J, Wirtz RM,
Schulz S and Lupp A: Comparison of immunoreactive score,
HER2/neu-Score and H-Score for the immunohistochemical evaluation
of somatostatin receptors in bronchopulmonary neuroendocrine
neoplasms. Histopathology. 67:368–377. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang M, Sun J, Chen B, Zhao Y, Gong H,
You Y and Qi R: Ginkgolide B inhibits platelet and monocyte
adhesion in TNFα-treated HUVECs under laminar shear stress. BMC
Complement Altern Med. 18:2202018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Davis FM and Gallagher KA: Epigenetic
mechanisms in monocytes/macrophages regulate inflammation in
cardiometabolic and vascular disease. Arterioscler Thromb Vasc
Biol. 39:623–634. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fong GH: Potential contributions of
intimal and plaque hypoxia to atherosclerosis. Curr Atheroscler
Rep. 17:5102015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dong G, Yang S, Cao X, Yu N, Yu J and Qu
X: Low shear stress-induced autophagy alleviates cell apoptosis in
HUVECs. Mol Med Rep. 15:3076–3082. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Danese S, Dejana E and Fiocchi C: Immune
regulation by microvascular endothelial cells: Directing innate and
adaptive immunity, coagulation, and inflammation. J Immunol.
178:6017–6022. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sarelius IH and Glading AJ: Control of
vascular permeability by adhesion molecules. Tissue Barriers.
3:e9859542015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Muller WA, Weigl SA, Deng X and Phillips
DM: PECAM-1 is required for transendothelial migration of
leukocytes. J Exp Med. 178:449–460. 1993. View Article : Google Scholar : PubMed/NCBI
|
34
|
Privratsky JR, Paddock CM, Florey O,
Newman DK, Muller WA and Newman PJ: Relative contribution of
PECAM-1 adhesion and signaling to the maintenance of vascular
integrity. J Cell Sci. 124:1477–1485. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Privratsky JR and Newman PJ: PECAM-1:
Regulator of endothelial junctional integrity. Cell Tissue Res.
355:607–619. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fleming I, Fisslthaler B, Dixit M and
Busse R: Role of PECAM-1 in the shear-stress-induced activation of
Akt and the endothelial nitric oxide synthase (eNOS) in endothelial
cells. J Cell Sci. 118:4103–4111. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jones CI, Sage T, Moraes LA, Vaiyapuri S,
Hussain U, Tucker KL, Barrett NE and Gibbins JM: Platelet
endothelial cell adhesion molecule-1 inhibits platelet response to
thrombin and von Willebrand factor by regulating the
internalization of glycoprotein Ib via AKT/glycogen synthase
kinase-3/dynamin and integrin αIIbβ3. Arterioscler Thromb Vasc
Biol. 34:1968–1976. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang X, Tang N, Hadden TJ and Rishi AK:
Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta.
1813:1978–1986. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wilhelm K, Happel K, Eelen G, Schoors S,
Oellerich MF, Lim R, Zimmermann B, Aspalter IM, Franco CA, Boettger
T, et al: FoxO1 couples metabolic activity and growth state in the
vascular endothelium. Nature. 529:216–220. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dharaneeswaran H, Abid MR, Yuan L, Dupuis
D, Beeler D, Spokes KC, Janes L, Sciuto T, Kang PM, Jaminet SS, et
al: FoxO1-mediated activation of Akt plays a critical role in
vascular homeostasis. Circ Res. 115:238–251. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li F, Qu H, Cao HC, Li MH, Chen C, Chen
XF, Yu B, Yu L, Zheng LM and Zhang W: Both FoxO3a and FoxO1 are
involved in the HGF-protective pathway against apoptosis in
endothelial cells. Cell Biol Int. 39:1131–1137. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xing YQ, Li A, Yang Y, Li XX, Zhang LN and
Guo HC: The regulation of FoxO1 and its role in disease
progression. Life Sci. 193:124–131. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fu Z and Tindall DJ: FoxOs, cancer and
regulation of apoptosis. Oncogene. 27:2312–2319. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cifarelli V, Lee S, Kim DH, Zhang T,
Kamagate A, Slusher S, Bertera S, Luppi P, Trucco M and Dong HH:
FoxO1 mediates the autocrine effect of endothelin-1 on endothelial
cell survival. Mol Endocrinol. 26:1213–1224. 2012. View Article : Google Scholar : PubMed/NCBI
|