1
|
Fitzgibbons SC, Ching Y, Yu D, Carpenter
J, Kenny M, Weldon C, Lillehei C, Valim C, Horbar JD and Jaksic T:
Mortality of necrotizing enterocolitis expressed by birth weight
categories. J Pediatr Surg. 44:1072–1076. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kastenberg ZJ, Lee HC, Profit J, Gould JB
and Sylvester KG: Effect of deregionalized care on mortality in
very low-birth-weight infants with necrotizing enterocolitis. JAMA
Pediatr. 169:26–32. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dukleska K, Devin CL, Martin AE, Miller
JM, Sullivan KM, Levy C, Prestowitz S, Flathers K, Vinocur CD and
Berman L: Necrotizing enterocolitis totalis: High mortality in the
absence of an aggressive surgical approach. Surgery. 165:1176–1181.
2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee JS and Polin RA: Treatment and
prevention of necrotizing enterocolitis. Semin Neonatol. 8:449–459.
2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shulhan J, Dicken B, Hartling L and Larsen
BM: Current Knowledge of Necrotizing Enterocolitis in Preterm
Infants and the Impact of Different Types of Enteral Nutrition
Products. Adv Nutr. 8:80–91. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kim ED and Sung S: Long noncoding RNA:
Unveiling hidden layer of gene regulatory networks. Trends Plant
Sci. 17:16–21. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Goff LA and Rinn JL: Linking RNA biology
to lncRNAs. Genome Res. 25:1456–1465. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Han Y, Hong Y, Li L, Li T, Zhang Z, Wang
J, Xia H, Tang Y, Shi Z, Han X, et al: A Transcriptome-Level Study
Identifies Changing Expression Profiles for Ossification of the
Ligamentum Flavum of the Spine. Mol Ther Nucleic Acids. 12:872–883.
2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim YJ, Hwang KC, Kim SW and Lee YC:
Potential miRNA-target interactions for the screening of gastric
carcinoma development in gastric adenoma/dysplasia. Int J Med Sci.
15:610–616. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xiao L, Rao JN, Cao S, Liu L, Chung HK,
Zhang Y, Zhang J, Liu Y, Gorospe M and Wang JY: Long noncoding RNA
SPRY4-IT1 regulates intestinal epithelial barrier function by
modulating the expression levels of tight junction proteins. Mol
Biol Cell. 27:617–626. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Geng H, Bu HF, Liu F, Wu L, Pfeifer K,
Chou PM, Wang X, Sun J, Lu L, Pandey A, et al: In Inflamed
Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling
Increases Expression of H19 Long Noncoding RNA, Which Promotes
Mucosal Regeneration. Gastroenterology. 155:144–155. 2018.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Bell MJ, Ternberg JL, Feigin RD, Keating
JP, Marshall R, Barton L and Brotherton T: Neonatal necrotizing
enterocolitis. Therapeutic decisions based upon clinical staging.
Ann Surg. 187:1–7. 1978. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mortazavi A, Williams BA, McCue K,
Schaeffer L and Wold B: Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat Methods. 5:621–628. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu M, Song S, Li H, Jiang X, Yin P, Wan
C, Liu X, Liu F and Xu J: The protective effect of caffeic acid
against inflammation injury of primary bovine mammary epithelial
cells induced by lipopolysaccharide. J Dairy Sci. 97:2856–2865.
2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yazji I, Sodhi CP, Lee EK, Good M, Egan
CE, Afrazi A, Neal MD, Jia H, Lin J, Ma C, et al: Endothelial TLR4
activation impairs intestinal microcirculatory perfusion in
necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl
Acad Sci USA. 110:9451–9456. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pang Y, Du X, Xu X, Wang M and Li Z:
Monocyte activation and inflammation can exacerbate Treg/Th17
imbalance in infants with neonatal necrotizing enterocolitis. Int
Immunopharmacol. 59:354–360. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Good M, Siggers RH, Sodhi CP, Afrazi A,
Alkhudari F, Egan CE, Neal MD, Yazji I, Jia H, Lin J, et al:
Amniotic fluid inhibits Toll-like receptor 4 signaling in the fetal
and neonatal intestinal epithelium. Proc Natl Acad Sci USA.
109:11330–11335. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jilling T, Simon D, Lu J, Meng FJ, Li D,
Schy R, Thomson RB, Soliman A, Arditi M and Caplan MS: The roles of
bacteria and TLR4 in rat and murine models of necrotizing
enterocolitis. J Immunol. 177:3273–3282. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sharma R, Tepas JJ III, Hudak ML, Mollitt
DL, Wludyka PS, Teng RJ and Premachandra BR: Neonatal gut barrier
and multiple organ failure: Role of endotoxin and proinflammatory
cytokines in sepsis and necrotizing enterocolitis. J Pediatr Surg.
42:454–461. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bonora M, Wieckowsk MR, Chinopoulos C,
Kepp O, Kroemer G, Galluzzi L and Pinton P: Molecular mechanisms of
cell death: Central implication of ATP synthase in mitochondrial
permeability transition. Oncogene. 34:16082015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang L, Fan J, He J, Chen W, Jin W, Zhu
Y, Sun H, Li Y, Shi Y, Jing Y, et al: Regulation of ROS-NF-κB axis
by tuna backbone derived peptide ameliorates inflammation in
necrotizing enterocolitis. J Cell Physiol. 234:14330–14338. 2019.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Good M, Sodhi CP, Egan CE, Afrazi A, Jia
H, Yamaguchi Y, Lu P, Branca MF, Ma C, Prindle T Jr, et al: Breast
milk protects against the development of necrotizing enterocolitis
through inhibition of Toll-like receptor 4 in the intestinal
epithelium via activation of the epidermal growth factor receptor.
Mucosal Immunol. 8:1166–1179. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wijendran V, Brenna JT, Wang DH, Zhu W,
Meng D, Ganguli K, Kothapalli KS, Requena P, Innis S and Walker WA:
Long-chain polyunsaturated fatty acids attenuate the IL-1β-induced
proinflammatory response in human fetal intestinal epithelial
cells. Pediatr Res. 78:626–633. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Feng Z, Zhou H, Ma S, Guan X, Chen L,
Huang J, Gui H, Miao X, Yu S, Wang JH and Wang J: FTY720 attenuates
intestinal injury and suppresses inflammation in experimental
necrotizing enterocolitis via modulating CXCL5/CXCR2 axis. Biochem
Biophys Res Commun. 505:1032–1037. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chan KY, Leung FW, Lam HS, Tam YH, To KF,
Cheung HM, Leung KT, Poon TC, Lee KH, Li K, et al: Immunoregulatory
protein profiles of necrotizing enterocolitis versus spontaneous
intestinal perforation in preterm infants. PLoS One. 7:e369772012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Sheng Q, Lv Z, Cai W, Song H, Qian L, Mu
H, Shi J and Wang X: Human β-defensin-3 promotes intestinal
epithelial cell migration and reduces the development of
necrotizing enterocolitis in a neonatal rat model. Pediatr Res.
76:269–279. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kandasamy J, Huda S, Ambalavanan N and
Jilling T: Inflammatory signals that regulate intestinal epithelial
renewal, differentiation, migration and cell death: Implications
for necrotizing enterocolitis. Pathophysiology. 21:67–80. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Manoharan I, Suryawanshi A, Hong Y,
Ranganathan P, Shanmugam A, Ahmad S, Swafford D, Manicassamy B,
Ramesh G, Koni PA, et al: Homeostatic PPARalpha Signaling Limits
Inflammatory Responses to Commensal Microbiota in the Intestine. J
Immunol. 196:4739–4749. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shiou SR, Yu Y, Chen S, Ciancio MJ, Petrof
EO, Sun J and Claud EC: Erythropoietin protects intestinal
epithelial barrier function and lowers the incidence of
experimental neonatal necrotizing enterocolitis. J Biol Chem.
286:12123–12132. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fang C, Xie L, Liu C, Fu C, Ye W, Liu H
and Zhang B: Berberine ameliorates neonatal necrotizing
enterocolitis by activating the phosphoinositide 3-kinase/protein
kinase B signaling pathway. Exp Ther Med. 15:3530–3536.
2018.PubMed/NCBI
|
33
|
MohanKumar K, Namachivayam K,
Chapalamadugu KC, Garzon SA, Premkumar MH, Tipparaju SM and
Maheshwari A: Smad7 interrupts TGF-β signaling in intestinal
macrophages and promotes inflammatory activation of these cells
during necrotizing enterocolitis. Pediatr Res. 79:951–961. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Baregamian N, Rychahou PG, Hawkins HK,
Evers BM and Chung DH: Phosphatidylinositol 3-kinase pathway
regulates hypoxia-inducible factor-1 to protect from intestinal
injury during necrotizing enterocolitis. Surgery. 142:295–302.
2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Günther W, Skaftnesmo KO, Arnold H,
Bjerkvig R and Terzis AJ: Distribution patterns of the
anti-angiogenic protein ADAMTS-1 during rat development. Acta
Histochem. 107:121–131. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hummitzsch L, Zitta K, Berndt R, Wong YL,
Rusch R, Hess K, Wedel T, Gruenewald M, Cremer J, Steinfath M, et
al: Remote ischemic preconditioning attenuates intestinal mucosal
damage: Insight from a rat model of ischemia-reperfusion injury. J
Transl Med. 17:1362019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kardos J, Harmat V, Palló A, Barabás O,
Szilágyi K, Gráf L, Náray-Szabó G, Goto Y, Závodszky P and Gál P:
Revisiting the mechanism of the autoactivation of the complement
protease C1r in the C1 complex: Structure of the active catalytic
region of C1r. Mol Immunol. 45:1752–1760. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kobayashi H, Albarracin L, Sato N, Kanmani
P, Kober AK, Ikeda-Ohtsubo W, Suda Y, Nochi T, Aso H, Makino S, et
al: Modulation of porcine intestinal epitheliocytes
immunetranscriptome response by Lactobacillus jensenii
TL2937. Benef Microbes. 7:769–782. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Regard JB, Scheek S, Borbiev T, Lanahan
AA, Schneider A, Demetriades AM, Hiemisch H, Barnes CA, Verin AD
and Worley PF: Verge: a novel vascular early response gene. J
Neurosci. 24:4092–4103. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Oakhill JS, Marritt SJ, Gareta EG, Cammack
R and McKie AT: Functional characterization of human duodenal
cytochrome B (Cybrd1): Redox properties in relation to iron and
ascorbate metabolism. Biochim Biophys Acta. 1777:260–268. 2008.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Schlottmann F, Vera-Aviles M and
Latunde-Dada GO: Duodenal cytochrome B (Cybrd1) ferric reductase
functional studies in cells. Metallomics. 9:1389–1393. 2017.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Patel RM, Knezevic A, Shenvi N, Hinkes M,
Keene S, Roback JD, Easley KA and Josephson CD: Association of Red
Blood Cell Transfusion, Anemia, and Necrotizing Enterocolitis in
Very Low-Birth-Weight Infants. JAMA. 315:889–897. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Glorieux C, Zamocky M, Sandoval JM, Verrax
J and Calderon PB: Regulation of catalase expression in healthy and
cancerous cells. Free Radic Biol Med. 87:84–97. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ma L, Mondal AK, Murea M, Sharma NK,
Tönjes A, Langberg KA, Das SK, Franks PW, Kovacs P, Antinozzi PA,
et al: The effect of ACACB cis-variants on gene expression
and metabolic traits. PLoS One. 6:e238602011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen G, Li Y, Su Y, Zhou L, Zhang H, Shen
Q, Du C, Li H, Wen Z, Xia Y, et al: Identification of candidate
genes for necrotizing enterocolitis based on microarray data. Gene.
661:152–159. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Caiado H, Conceição N, Tiago D, Marreiros
A, Vicente S, Enriquez JL, Vaz AM, Antunes A, Guerreiro H, Caldeira
P, et al: Evaluation of MGP gene expression in colorectal cancer.
Gene. 723:1441202020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dauphinee SM, Clayton A, Hussainkhel A,
Yang C, Park YJ, Fuller ME, Blonder J, Veenstra TD and Karsan A:
SASH1 is a scaffold molecule in endothelial TLR4 signaling. J
Immunol. 191:892–901. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Coulombe P, Paliouras GN, Clayton A,
Hussainkhel A, Fuller M, Jovanovic V, Dauphinee S, Umlandt P, Xiang
P, Kyle AH, et al: Endothelial Sash1 Is Required for Lung
Maturation through Nitric Oxide Signaling. Cell Rep.
27:1769–1780.e1764. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Um SH, Kim JS, Kim K, Kim N, Cho HS and Ha
NC: Structural basis for the inhibition of human lysozyme by PliC
from Brucella abortus. Biochemistry. 52:9385–9393. 2013.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Singh SB, Wilson M, Ritz N and Lin HC:
Autophagy Genes of Host Responds to Disruption of Gut Microbial
Community by Antibiotics. Dig Dis Sci. 62:1486–1497. 2017.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J,
Yan L, Lu L, Liu C, Yi JS, Zhang H, et al: The imprinted H19 lncRNA
antagonizes let-7 microRNAs. Mol Cell. 52:101–112. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Fan Z, Gao S, Chen Y, Xu B, Yu C, Yue M
and Tan X: Integrative analysis of competing endogenous RNA
networks reveals the functional lncRNAs in heart failure. J Cell
Mol Med. 22:4818–4829. 2018. View Article : Google Scholar : PubMed/NCBI
|