1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Whiteman DC, Green AC and Olsen CM: The
growing burden of invasive melanoma: Projections of incidence rates
and numbers of new cases in six susceptible populations through
2031. J Invest Dermatol. 136:1161–1171. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Flaherty KT, Puzanov I, Kim KB, Ribas A,
McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K and
Chapman PB: Inhibition of mutated, activated BRAF in metastatic
melanoma. N Engl J Med. 363:809–819. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sosman JA, Kim KB, Schuchter L, Gonzalez
R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ,
Flaherty KT, et al: Survival in BRAF V600-mutant advanced melanoma
treated with vemurafenib. N Engl J Med. 366:707–714. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Obenauf AC, Zou Y, Ji AL, Vanharanta S,
Shu W, Shi H, Kong X, Bosenberg MC, Wiesner T, Rosen N, et al:
Therapy-induced tumour secretomes promote resistance and tumour
progression. Nature. 520:368–372. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Luebker SA and Koepsell SA: Diverse
mechanisms of BRAF inhibitor resistance in melanoma identified in
clinical and preclinical studies. Front Oncol. 9:2682019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Long GV, Stroyakovskiy D, Gogas H,
Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A,
Grob JJ, et al: Combined BRAF and MEK inhibition versus BRAF
inhibition alone in melanoma. N Engl J Med. 371:1877–1888. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Long GV, Weber JS, Infante JR, Kim KB,
Daud A, Gonzalez R, Sosman JA, Hamid O, Schuchter L, Cebon J, et
al: Overall survival and durable responses in patients with BRAF
V600-mutant metastatic melanoma receiving dabrafenib combined with
trametinib. J Clin Oncol. 34:871–878. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sugie S, Okamoto K, Rahman KW, Tanaka T,
Kawai K, Yamahara J and Mori H: Inhibitory effects of plumbagin and
juglone on azoxymethane-induced intestinal carcinogenesis in rats.
Cancer Lett. 127:177–183. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Polonik SG, Prokof'eva NG, Agafonova IG
and Uvarova NI: Antitumor and immunostimulating activity of
5-hydroxy-1, 4-naphthoquinone (juglone) O-and S-acetylglycosides.
Pharm Chem J. 37:397–398. 2003. View Article : Google Scholar
|
11
|
Aithal KB, Kumar SM, Rao NB, Udupa N and
Rao SB: Juglone, a naphthoquinone from walnut, exerts cytotoxic and
genotoxic effects against cultured melanoma tumor cells. Cell Biol
Int. 33:1039–1049. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Aithal KB, Kumar S, Rao BN, Udupa N and
Rao SBS: Tumor growth inhibitory effect of juglone and its
radiation sensitizing potential: In vivo and in vitro studies.
Integr Cancer Ther. 11:68–80. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu X, Chen Y, Zhang Y, Du J, Lv Y, Mo S,
Liu Y, Ding F, Wu J and Li J: Juglone potentiates TRAIL-induced
apoptosis in human melanoma cells via activating the ROS-p38-p53
pathway. Mol Med Rep. 16:9645–9651. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu HL, Yu XF, Qu SC, Qu XR, Jiang YF and
Sui da Y: Juglone, from Juglans mandshruica Maxim, inhibits growth
and induces apoptosis in human leukemia cell HL-60 through a
reactive oxygen species-dependent mechanism. Food Chem Toxicol.
50:590–596. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Corazao-Rozas P, Guerreschi P, Jendoubi M,
André F, Jonneaux A, Scalbert C, Garçon G, Malet-Martino M,
Balayssac S, Rocchi S, et al: Mitochondrial oxidative stress is the
Achille's heel of melanoma cells resistant to Braf-mutant
inhibitor. Oncotarget. 4:1986–1998. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Feng Z, Kochanek S, Close D, Wang L,
Srinivasan A, Almehizia AA, Iyer P, Xie XQ, Johnston PA and Gold B:
Design and activity of AP endonuclease-1 inhibitors. J Chem Biol.
8:79–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu F, Cao J, Wu J, Sullivan K, Shen J,
Ryu B, Xu Z, Wei W and Cui R: Stat3-targeted therapies overcome the
acquired resistance to vemurafenib in melanomas. J Invest Dermatol.
133:2041–2049. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Guerriero L, Palmieri G, De Marco M, Cossu
A, Remondelli P, Capunzo M, Turco MC and Rosati A: The
anti-apoptotic BAG3 protein is involved in BRAF inhibitor
resistance in melanoma cells. Oncotarget. 8:80393–80404. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu L, Li T, Tan J, Fu J, Guo Q, Ji H and
Zhang Y: NG as a novel nitric oxide donor induces apoptosis by
increasing reactive oxygen species and inhibiting mitochondrial
function in MGC803 cells. Int Immunopharmacol. 23:27–36. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Chou TC: Drug combination studies and
their synergy quantification using the Chou-Talalay method. Cancer
Res. 70:440–446. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Soldani C and Scovassi AI:
Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update.
Apoptosis. 7:321–328. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ambrosini G, Adida C, Sirugo G and Altieri
DC: Induction of apoptosis and inhibition of cell proliferation by
survivin gene targeting. J Biol Chem. 273:11177–11182. 1998.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC,
Hwang JI, Chung CW, Jung YK and Oh BH: An anti-apoptotic protein
human survivin is a direct inhibitor of caspase-3 and-7.
Biochemistry. 40:1117–1123. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang C, Liang J, Qian J, Jin L, Du M, Li M
and Li D: Opposing role of JNK-p38 kinase and ERK1/2 in hydrogen
peroxide-induced oxidative damage of human trophoblast-like JEG-3
cells. Int J Clin Exp Pathol. 7:959–968. 2014.PubMed/NCBI
|
25
|
Renault TT and Manon S: Bax: Addressed to
kill. Biochimie. 93:1379–1391. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Antonsson B, Conti F, Ciavatta A,
Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod
JJ, Mazzei G, et al: Inhibition of Bax channel-forming activity by
Bcl-2. Science. 277:370–372. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Simon HU, Haj-Yehia A and Levi-Schaffer F:
Role of reactive oxygen species (ROS) in apoptosis induction.
Apoptosis. 5:415–418. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Perfettini JL, Castedo M, Nardacci R,
Ciccosanti F, Boya P, Roumier T, Larochette N, Piacentini M and
Kroemer G: Essential role of p53 phosphorylation by p38 MAPK in
apoptosis induction by the HIV-1 envelope. J Exp Med. 201:279–289.
2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu GS: The functional interactions between
the MAPK and p53 signaling pathways. Cancer Biol Ther. 3:156–161.
2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ji YB, Qu ZY and Zou X: Juglone-induced
apoptosis in human gastric cancer SGC-7901 cells via the
mitochondrial pathway. Exp Toxicol Pathol. 63:69–78. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Segura-Aguilar J, Jönsson K, Tidefelt U
and Paul C: The cytotoxic effects of 5-OH-1,4-naphthoquinone and
5,8-diOH-1,4-naphthoquinone on doxorubicin-resistant human leukemia
cells (HL-60). Leuk Res. 16:631–637. 1992. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sajadimajd S and Yazdanparast R:
Sensitizing effect of juglone is mediated by down regulation of
Notch1 signaling pathway in trastuzumab-resistant SKBR3 cells.
Apoptosis. 22:135–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xu HL, Yu XF, Qu SC, Zhang R, Qu XR, Chen
YP, Ma XY and Sui DY: Anti-proliferative effect of Juglone from
Juglans mandshurica Maxim on human leukemia cell HL-60 by inducing
apoptosis through the mitochondria-dependent pathway. Eur J
Pharmacol. 645:14–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ahmad T and Suzuki YJ: Juglone in
oxidative stress and cell signaling. Antioxidants (Basel). 8(pii):
E912019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sidlauskas K, Sidlauskiene R, Li N and
Liobikas J: 5-Hydroxy-1,4-naphthalenedione exerts anticancer
effects on glioma cells through interaction with the mitochondrial
electron transport chain. Neurosci Lett. 639:207–214. 2017.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ziech D, Franco R, Pappa A and
Panayiotidis MI: Reactive oxygen species (ROS)-induced genetic and
epigenetic alterations in human carcinogenesis. Mutat Res.
711:167–173. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Martindale JL and Holbrook NJ: Cellular
response to oxidative stress: Signaling for suicide and survival. J
Cell Physiol. 192:1–15. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Smeenk L, Van Heeringen SJ, Koeppel M,
Gilbert B, Janssen-Megens E, Stunnenberg HG and Lohrum M: Role of
p53 serine 46 in p53 target gene regulation. PLoS One.
6:e175742011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Levine AJ and Oren M: The first 30 years
of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Lu Z, Chen H, Zheng XM and Chen ML:
Experimental study on the apoptosis of cervical cancer Hela cells
induced by juglone through c-Jun N-terminal kinase/c-Jun pathway.
Asian Pac J Trop Med. 10:572–575. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Graziani G, Artuso S, De Luca A, Muzi A,
Rotili D, Scimeca M, Atzori MG, Ceci C, Mai A, Leonetti C, et al: A
new water soluble MAPK activator exerts antitumor activity in
melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem
Pharmacol. 95:16–27. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Montenegro RC, Araújo AJ, Molina MT,
Marinho Filho JD, Rocha DD, Lopéz-Montero E, Goulart MO, Bento ES,
Alves AP, Pessoa C, et al: Cytotoxic activity of naphthoquinones
with special emphasis on juglone and its 5-O-methyl derivative.
Chem Biol Interact. 184:439–448. 2010. View Article : Google Scholar : PubMed/NCBI
|