1
|
d'Ischia M, Wakamatsu K, Napolitano A,
Briganti S, Garcia-Borron JC, Kovacs D, Meredith P, Pezzella A,
Picardo M, Sarna T, et al: Melanins and melanogenesis: Methods,
standards, protocols. Pigment Cell Melanoma Res. 26:616–633. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Olivares C and Solano F: New insights into
the active site structure and catalytic mechanism of tyrosinase and
its related proteins. Pigment Cell Melanoma Res. 22:750–760. 2009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Cortese K, Giordano F, Surace EM, Venturi
C, Ballabio A, Tacchetti C and Marigo V: The ocular albinism type 1
(OA1) gene controls melanosome maturation and size. Invest
Ophthalmol Vis Sci. 46:4358–4364. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bissig C, Rochin L and van Niel G: PMEL
amyloid fibril formation: The bright steps of pigmentation. Int J
Mol Sci. 17(pii): E14382016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Paterson EK, Fielder TJ, MacGregor GR, Ito
S, Wakamatsu K, Gillen DL, Eby V, Boissy RE and Ganesan AK:
Tyrosinase depletion prevents the maturation of melanosomes in the
mouse hair follicle. PLoS One. 10:e01437022015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Berson JF, Harper DC, Tenza D, Raposo G
and Marks MS: Pmel17 initiates premelanosome morphogenesis within
multivesicular bodies. Mol Biol Cell. 12:3451–3464. 2001.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Yasumoto K, Yokoyama K, Takahashi K,
Tomita Y and Shibahara S: Functional analysis of
microphthalmia-associated transcription factor in pigment
cell-specific transcription of the human tyrosinase family genes. J
Biol Chem. 272:503–509. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sarkar D, Boukerche H, Su ZZ and Fisher
PB: mda-9/syntenin: Recent insights into a novel cell signaling and
metastasis-associated gene. Pharmacol Ther. 104:101–115. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lin J, Jiang H and Fisher P:
Characterization of a novel melanoma differentiation associated
gene, mda-9, that is down regulated during terminal cell
differentiation. Mol Cell Differ. 4:317–333. 1996.
|
10
|
Kegelman TP, Das SK, Emdad L, Hu B,
Menezes ME, Bhoopathi P, Wang XY, Pellecchia M, Sarkar D and Fisher
PB: Targeting tumor invasion: The roles of MDA-9/Syntenin. Expert
Opin Ther Targets. 19:97–112. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xiao D, Ohlendorf J, Chen Y, Taylor DD,
Rai SN, Waigel S, Zacharias W, Hao H and McMasters KM: Identifying
mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One.
7:e468742012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang P, Liu W, Zhu C, Yuan X, Li D, Gu W,
Ma H, Xie X and Gao T: Silencing of GPNMB by siRNA inhibits the
formation of melanosomes in melanocytes in a MITF-independent
fashion. PLoS One. 7:e429552012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hosoi J, Abe E, Suda T and Kuroki T:
Regulation of melanin synthesis of B16 mouse melanoma cells by 1
alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res.
45:1474–1478. 1985.PubMed/NCBI
|
14
|
Martínez-Esparza M, Jiménez-Cervantes C,
Solano F, Lozano JA and García-Borrón JC: Mechanisms of
melanogenesis inhibition by tumor necrosis factor-alpha in B16/F10
mouse melanoma cells. Eur J Biochem. 255:139–146. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou J, Shang J, Ping F and Zhao G:
Alcohol extract from Vernonia anthelmintica (L.) willd seed
enhances melanin synthesis through activation of the p38 MAPK
signaling pathway in B16F10 cells and primary melanocytes. J
Ethnopharmacol. 143:639–647. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Basrur V, Yang F, Kushimoto T, Higashimoto
Y, Yasumoto K, Valencia J, Muller J, Vieira WD, Watabe H,
Shabanowitz J, et al: Proteomic analysis of early melanosomes:
Identification of novel melanosomal proteins. J Proteome Res.
2:69–79. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jung E, Kim JH, Kim MO, Jang S, Kang M, Oh
SW, Nho YH, Kang SH, Kim MH, Park SH and Lee J: Afzelin positively
regulates melanogenesis through the p38 MAPK pathway. Chem Biol
Interact. 254:167–172. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Makpol S, Jam FA, Rahim NA, Khor SC,
Ismail Z, Yusof YA and Wan Ngah WZ: Comparable down-regulation of
TYR, TYRP1 and TYRP2 genes and inhibition of melanogenesis by
tyrostat, tocotrienol-rich fraction and tocopherol in human skin
melanocytes improves skin pigmentation. Clin Ter. 165:39–45.
2014.
|
19
|
Watt B, van Niel G, Raposo G and Marks MS:
PMEL: A pigment cell-specific model for functional amyloid
formation. Pigment Cell Melanoma Res. 26:300–315. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vachtenheim J and Borovanský J:
‘Transcription physiology’ of pigment formation in melanocytes:
Central role of MITF. Exp Dermatol. 19:617–627. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pan L, Ma X, Wen B, Su Z, Zheng X, Liu Y,
Li H, Chen Y, Wang J, Lu F, et al: Microphthalmia-associated
transcription factor/T-box factor-2 axis acts through Cyclin D1 to
regulate melanocyte proliferation. Cell Prolif. 48:631–642. 2015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Khaled M, Larribere L, Bille K, Aberdam E,
Ortonne JP, Ballotti R and Bertolotto C: Glycogen synthase kinase
3beta is activated by cAMP and plays an active role in the
regulation of melanogenesis. J Biol Chem. 277:33690–33697. 2002.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiménez-Cervantes C, Martínez-Esparza M,
Pérez C, Daum N, Solano F and García-Borrón JC: Inhibition of
melanogenesis in response to oxidative stress: Transient
downregulation of melanocyte differentiation markers and possible
involvement of microphthalmia transcription factor. J Cell Sci.
114:2335–2344. 2001.PubMed/NCBI
|
24
|
D'Mello SA, Finlay GJ, Baguley BC and
Askarian-Amiri ME: Signaling pathways in melanogenesis. Int J Mol
Sci. 17(pii): E11442016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim DS, Jeong YM, Park IK, Hahn HG, Lee
HK, Kwon SB, Jeong JH, Yang SJ, Sohn UD and Park KC: A new
2-imino-1,3-thiazoline derivative, KHG22394, inhibits melanin
synthesis in mouse B16 melanoma cells. Biol Pharm Bull. 30:180–183.
2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bu J, Ma PC, Chen ZQ, Zhou WQ, Fu YJ, Li
LJ and Li CR: Inhibition of MITF and tyrosinase by
paeonol-stimulated JNK/SAPK to reduction of phosphorylated CREB. Am
J Chin Med. 36:245–263. 2008. View Article : Google Scholar : PubMed/NCBI
|