1
|
Barquera S, Pedroza-Tobías A, Medina C,
Hernández-Barrera L, Bibbins-Domingo K, Lozano R and Moran AE:
Global overview of the epidemiology of atherosclerotic
cardiovascular disease. Arch Med Res. 46:328–338. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman
M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C,
et al American Heart Association Statistics Committee and Stroke
Statistics Subcommittee, : Heart Disease and Stroke Statistics-2017
Update: A Report From the American Heart Association. Circulation.
135:e146–e603. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tabas I, Williams KJ and Borén J:
Subendothelial lipoprotein retention as the initiating process in
atherosclerosis: Update and therapeutic implications. Circulation.
116:1832–1844. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ustün-Aytekin O, Gürhan ID, Ohura K, Imai
T and Ongen G: Monitoring of the effects of transfection with
baculovirus on Sf9 cell line and expression of human dipeptidyl
peptidase IV. Cytotechnology. 66:159–168. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Otsuka F, Finn AV, Yazdani SK, Nakano M,
Kolodgie FD and Virmani R: The importance of the endothelium in
atherothrombosis and coronary stenting. Nat Rev Cardiol. 9:439–453.
2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pober JS and Sessa WC: Evolving functions
of endothelial cells in inflammation. Nat Rev Immunol. 7:803–815.
2007. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Stoneman VE and Bennett MR: Role of
apoptosis in atherosclerosis and its therapeutic implications. Clin
Sci (Lond). 107:343–354. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sawamura T, Kume N, Aoyama T, Moriwaki H,
Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, et al: An
endothelial receptor for oxidized low-density lipoprotein. Nature.
386:73–77. 1997. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Cominacini L, Rigoni A, Pasini AF, Garbin
U, Davoli A, Campagnola M, Pastorino AM, Lo Cascio V and Sawamura
T: The binding of oxidized low density lipoprotein (ox-LDL) to
ox-LDL receptor-1 reduces the intracellular concentration of nitric
oxide in endothelial cells through an increased production of
superoxide. J Biol Chem. 276:13750–13755. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Uchida K: Redox-derived damage-associated
molecular patterns: Ligand function of lipid peroxidation adducts.
Redox Biol. 1:94–96. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ou H-C, Chou F-P, Sheu WH-H, Hsu S-L and
Lee W-J: Protective effects of magnolol against oxidized
LDL-induced apoptosis in endothelial cells. Arch Toxicol.
81:421–432. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mitra S, Deshmukh A, Sachdeva R, Lu J and
Mehta JL: Oxidized low-density lipoprotein and atherosclerosis
implications in antioxidant therapy. Am J Med Sci. 342:135–142.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang H, Mohamed ASS and Zhou SH: Oxidized
low density lipoprotein, stem cells, and atherosclerosis. Lipids
Health Dis. 11:852012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Qin H, Yeh W-I, De Sarno P, Holdbrooks AT,
Liu Y, Muldowney MT, Reynolds SL, Yanagisawa LL, Fox TH III, Park
K, et al: Signal transducer and activator of
transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3)
axis in myeloid cells regulates neuroinflammation. Proc Natl Acad
Sci USA. 109:5004–5009. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Duan W, Yang Y, Yi W, Yan J, Liang Z, Wang
N, Li Y, Chen W, Yu S, Jin Z, et al: New role of JAK2/STAT3
signaling in endothelial cell oxidative stress injury and
protective effect of melatonin. PLoS One. 8:e579412013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Qin M, Luo Y, Meng XB, Wang M, Wang HW,
Song SY, Ye JX, Pan RL, Yao F, Wu P, et al: Myricitrin attenuates
endothelial cell apoptosis to prevent atherosclerosis: An insight
into PI3K/Akt activation and STAT3 signaling pathways. Vascul
Pharmacol. 70:23–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Behrouz Sharif S, Hashemzadeh S, Mousavi
Ardehaie R, Eftekharsadat A, Ghojazadeh M, Mehrtash AH, Estiar MA,
Teimoori-Toolabi L and Sakhinia E: Detection of aberrant methylated
SEPT9 and NTRK3 genes in sporadic colorectal cancer patients as a
potential diagnostic biomarker. Oncol Lett. 12:5335–5343. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
19
|
le Sage C and Agami R: Immense promises
for tiny molecules: Uncovering miRNA functions. Cell Cycle.
5:1415–1421. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Menghini R, Stöhr R and Federici M:
MicroRNAs in vascular aging and atherosclerosis. Ageing Res Rev.
17:68–78. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lin Y, Liu X, Cheng Y, Yang J, Huo Y and
Zhang C: Involvement of microRNAs in hydrogen peroxide-mediated
gene regulation and cellular injury response in vascular smooth
muscle cells. J Biol Chem. 284:7903–7913. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu
Q, Deitch EA, Huo Y, Delphin ES and Zhang C: MicroRNA-145, a novel
smooth muscle cell phenotypic marker and modulator, controls
vascular neointimal lesion formation. Circ Res. 105:158–166. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Sun X, He S, Wara AKM, Icli B, Shvartz E,
Tesmenitsky Y, Belkin N, Li D, Blackwell TS, Sukhova GK, et al:
Systemic delivery of microRNA-181b inhibits nuclear factor-κB
activation, vascular inflammation, and atherosclerosis in
apolipoprotein E-deficient mice. Circ Res. 114:32–40. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhi F, Zhou G, Shao N, Xia X, Shi Y, Wang
Q, Zhang Y, Wang R, Xue L, Wang S, et al: miR-106a-5p inhibits the
proliferation and migration of astrocytoma cells and promotes
apoptosis by targeting FASTK. PLoS One. 8:e723902013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Huang Q and Ma Q: MicroRNA-106a inhibits
cell proliferation and induces apoptosis in colorectal cancer
cells. Oncol Lett. 15:8941–8944. 2018.PubMed/NCBI
|
27
|
Cuevas A, Saavedra N, Cavalcante MF,
Salazar LA and Abdalla DSP: Identification of microRNAs involved in
the modulation of pro-angiogenic factors in atherosclerosis by a
polyphenol-rich extract from propolis. Arch Biochem Biophys.
557:28–35. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sherry MM, Reeves A, Wu JK and Cochran BH:
STAT3 is required for proliferation and maintenance of multipotency
in glioblastoma stem cells. Stem Cells. 27:2383–2392. 2009.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
He Y, Meng X-M, Huang C, Wu BM, Zhang L,
Lv XW and Li J: Long noncoding RNAs: Novel insights into
hepatocelluar carcinoma. Cancer Lett. 344:20–27. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hu MY, Du XB, Hu HB, Shi Y, Chen G and
Wang YY: MiR-410 inhibition induces HUVECs proliferation and
represses ox-LDL-triggered apoptosis through activating STAT3.
Biomed Pharmacother. 101:585–590. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang X, Liu X, Li Y, Lai J, Zhang N, Ming
J, Ma X, Ji Q and Xing Y: Downregulation of microRNA-155
ameliorates high glucose-induced endothelial injury by inhibiting
NF-κB activation and promoting HO-1 and NO production. Biomed
Pharmacother. 88:1227–1234. 2017. View Article : Google Scholar
|
33
|
Lu J, Mitra S, Wang X, Khaidakov M and
Mehta JL: Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in
atherogenesis and tumorigenesis. Antioxid Redox Signal.
15:2301–2333. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cui J, Wang JS, Wang SM, Lian C, Qiu JC
and Liu Z: microRNA-106a-5p regulated the funcation human umbilical
vein endothelial cells by targeting STAT3. Zhonghua Yi Xue Za Zhi.
99:3814–3818. 2019.(In Chinese). PubMed/NCBI
|
35
|
Santoro MM, Samuel T, Mitchell T, Reed JC
and Stainier DYR: Birc2 (cIap1) regulates endothelial cell
integrity and blood vessel homeostasis. Nat Genet. 39:1397–1402.
2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mano T, Masuyama T, Yamamoto K, Naito J,
Kondo H, Nagano R, Tanouchi J, Hori M, Inoue M and Kamada T:
Endothelial dysfunction in the early stage of atherosclerosis
precedes appearance of intimal lesions assessable with
intravascular ultrasound. Am Heart J. 131:231–238. 1996. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xu RX, Sun XC, Ma CY, Yao YH, Li XL, Guo
YL, Zhang Y, Li S and Li JJ: Impacts of berberine on oxidized
LDL-induced proliferation of human umbilical vein endothelial
cells. Am J Transl Res. 9:4375–4389. 2017.PubMed/NCBI
|
38
|
Qin B, Xiao B, Liang D, Xia J, Li Y and
Yang H: MicroRNAs expression in ox-LDL treated HUVECs: MiR-365
modulates apoptosis and Bcl-2 expression. Biochem Biophys Res
Commun. 410:127–133. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Y, Qin W, Zhang L, Wu X, Du N, Hu Y,
Li X, Shen N, Xiao D, Zhang H, et al: MicroRNA-26a prevents
endothelial cell apoptosis by directly targeting TRPC6 in the
setting of atherosclerosis. Sci Rep. 5:94012015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Qin B, Cao Y, Yang H, Xiao B and Lu Z:
MicroRNA-221/222 regulate ox-LDL-induced endothelial apoptosis via
Ets-1/p21 inhibition. Mol Cell Biochem. 405:115–124. 2015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wu C, Gong Y, Yuan J, Zhang W, Zhao G, Li
H, Sun A, Zou Y and Ge J: microRNA-181a represses ox-LDL-stimulated
inflammation response in dendritic cell by targeting c-Fos. J Lipid
Res. 53:2355–2363. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Stocker R and Keaney JF Jr: Role of
oxidative modifications in atherosclerosis. Physiol Rev.
84:1381–1478. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Madamanchi NR and Runge MS: Mitochondrial
dysfunction in atherosclerosis. Circ Res. 100:460–473. 2007.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu J, Yao S-T, Zhai L, Feng YL, Song GH,
Yu Y, Zhu P and Qin SC: Ox-LDL down-regulates expression of pigment
epithelium-derived factor in human umbilical vein endothelial
cells. Sheng Li Xue Bao. 66:489–495. 2014.(In Chinese). PubMed/NCBI
|
45
|
Hulsmans M, De Keyzer D and Holvoet P:
MicroRNAs regulating oxidative stress and inflammation in relation
to obesity and atherosclerosis. FASEB J. 25:2515–2527. 2011.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhong X, Li P, Li J, He R, Cheng G and Li
Y: Downregulation of microRNA - 34a inhibits oxidized low - density
lipoprotein - induced apoptosis and oxidative stress in human
umbilical vein endothelial cells. Int J Mol Med. 42:1134–1144.
2018.PubMed/NCBI
|
47
|
Zhang H, Zhao Z, Pang X, Yang J, Yu H,
Zhang Y, Zhou H and Zhao J: MiR-34a/sirtuin-1/foxo3a is involved in
genistein protecting against ox-LDL-induced oxidative damage in
HUVECs. Toxicol Lett. 277:115–122. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lao M, Shi M, Zou Y, Huang M, Ye Y, Qiu Q,
Xiao Y, Zeng S, Liang L, Yang X and Xu H: Protein inhibitor of
activated STAT3 regulates migration, invasion, and activation of
fibroblast-like synoviocytes in rheumatoid arthritis. J Immunol.
196:596–606. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kluger MA, Melderis S, Nosko A, Goerke B,
Luig M, Meyer MC, Turner JE, Meyer-Schwesinger C, Wegscheid C,
Tiegs G, et al: Treg17 cells are programmed by Stat3 to suppress
Th17 responses in systemic lupus. Kidney Int. 89:158–166. 2016.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Miyoshi K, Takaishi M, Nakajima K, Ikeda
M, Kanda T, Tarutani M, Iiyama T, Asao N, DiGiovanni J and Sano S:
Stat3 as a therapeutic target for the treatment of psoriasis: A
clinical feasibility study with STA-21, a Stat3 inhibitor. J Invest
Dermatol. 131:108–117. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Gharavi NM, Alva JA, Mouillesseaux KP, Lai
C, Yeh M, Yeung W, Johnson J, Szeto WL, Hong L, Fishbein M, et al:
Role of the Jak/STAT pathway in the regulation of interleukin-8
transcription by oxidized phospholipids in vitro and in
atherosclerosis in vivo. J Biol Chem. 282:31460–31468. 2007.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Vasamsetti SB, Karnewar S, Kanugula AK,
Raj AT, Kumar JM and Kotamraju S: Metformin inhibits
monocyte-to-macrophage differentiation via AMPK-mediated inhibition
of STAT3 activation: Potential role in atherosclerosis. Diabetes.
64:2028–2041. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang M, Ye Y, Cong J, Pu D, Liu J, Hu G
and Wu J: Regulation of STAT3 by miR-106a is linked to cognitive
impairment in ovariectomized mice. Brain Res. 1503:43–52. 2013.
View Article : Google Scholar : PubMed/NCBI
|